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Preface

Staying connected is desired by anyone with respect to her or his own social network.
Staying connected can be of vital importance in car-to-car communication networks as
fast and reliable information transfer might not only improve fluidity of road traffic but
also hinder traffic accidents. Complex dynamic systems such as appearing in e-mobility
and telematics require new approaches of mathematical modeling. This report comprises
some results from different research projects in the area of network reliability analysis,
road traffic simulation, and intelligent power grids for e-mobility.
Chapter 1 of this report provides an introduction to mathematical models of network

reliability analysis with emphasis on communication networks. It introduces relevant
measures of network reliability and describes the main problems of network reliability
analysis.
When a communication network loses its connectivity then most likely a single vertex

becomes isolated. Consequently, the calculation of the probability that a network with
randomly failing edges possesses isolated vertices is an important problem in reliability
analysis. Different approaches to the solution of this problem are presented in Chapter 2.
Car-to-car communication networks are mobile ad-hoc networks without a precisely

predictable structure, which renders routing and broadcasting a challenging task. Chap-
ter 3 shows that random broadcasting methods provide mechanisms that alleviate the
negative effects of blind flooding – a broadcasting scheme where each node immediately
sends any new message to all of its neighbors. It also shows that the mathematical
analysis of random broadcasting processes yields a difficult task that can be attacked
via models related to the rainbow coloring problem of graphs. Chapter 4 continues
the investigation of rainbow coloring problems and provides explicit solutions for some
special cases.
Redundancy is a standard method applied in reliability engineering in order to make

complex systems resistant against failures of its components. Redundancy is achieved in
communication networks by reservation of alternative paths between terminals or more
generally by guaranteeing higher connectivity. Chapter 5 is devoted to the calculation
of the two-edge connected reliability, which is the probability that there exist two edge
independent paths between any two vertices of a graph.
Basic principles for the management of information flow and sharing of data within car-

to-car networks are presented in Chapter 6. One application of data sharing between cars
is the improvement of navigation via inclusion of collectively aggregated traffic density
data. A quite different aspect of e-mobility is the optimal planning and management of
power grids supporting car recharging. Chapter 7 deals with the minimization of current
fluctuations emerging in low voltage grids with many connected car charging stations.
Finally, I would like to thank all authors of this report and especially Sara Kischnick

not only for contributing scientific results but also for carrying out all the LATEX-work
required to produce this book.

Mittweida, June 2015 Peter Tittmann
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Reliability Analysis of Car
Communication Networks
Peter Tittmann

This chapter introduces basic notions from reliability theory that are important for the
analysis of car communication networks. In addition, it provides an overview about
mathematical models in network reliability analysis and presents relevant reliability
measures.

1 Introduction to Reliability and Safety of

Communication Networks

The first economic objective of any network operator is profit maximization. In order to
achieve this basic goal, some activities concerning the network dependability emerge
naturally. The main goal is to minimize costs that are caused by network failure. This
objective in turn implies some of the following measures:

• Minimize the failure time of the system.

• Ensure that in case of a network failure a minimum number of users is impacted.

• Try to maintain as many services as possible when components of the network fail.
If network failures cause high temporary peaks of traffic, then attempt to ensure
that high-priority services are still guaranteed.

• Ensure that security of services and privacy of user data is maintained even in
case of local or global network failures.

• Organize measures in order to achieve a quick recover from network failures.
The implementation of this aim requires the development of methods of failure
prediction.

The art of design of a system (communication network) that meets the above given
requirements is called reliability engineering. Figure 1 shows some requirements of
communication network design.
The design of a reliable communication network is impossible without proper knowledge

about system properties, parameters, and mechanisms that affect network reliability. So,
the first necessary step is the search for a network model that reflects its properties with
respect to reliability. Then we have to define suitable reliability parameters, assumptions,
target functions, and restrictions. The design and implementation of algorithms for the
computation of reliability measures permits finally the investigation of concrete networks.
We subsume all steps of this process under the term network reliability analysis.
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Figure 1: Demands for proper network operation

2 Scale and Accuracy of the Model

In order to form a model of the network in question, the definition of a scale of view
and a clear boundary of our system is indispensable [21]. Nowadays virtually any
communication network is somehow connected to the internet, which does not imply
that we have to analyze the whole internet in order to investigate the reliability of a
small wireless home network. Usually we assume that the Wi-Fi router has connection
to an ISP and restrict the reliability analysis to the computers and other devices that
are connected to the router. Quite another (often presupposed) assumption is that the
power grid delivering electricity for the router and connected devices is well-operating.
All these conditions define the outer boundary of the network in question.

The scale of consideration (called limit of resolution in [21]) defines the inner boundary
of our system. When we investigate the dependability of VoIP communication, then
we can tolerate transmission errors that do not affect the intelligibility. The loss of
a single bit does not have any impact on the quality of speech transmission. On the
other hand, the successful transfer of a program via the Internet requires that every
single byte is transmitted correctly. However, the download of programs is much less
dependent on latency as, for instance, video transmission. Hence, the first observation
is that the required accuracy of the reliability analysis depends on the quality demands
of the service. The scale of consideration has different aspects:

• The required accuracy defines tolerance limits for measurements. Here we have to
find a balance between desired accuracy of results and realistic assumptions about
procurable data.

• The time resolution refers to the precision of a measurement with respect to time.
A finer time resolution implies a higher analytic effort. There are different ways to
reduce time resolution. Fast error correcting mechanisms might be able to repair
short-time errors without affecting the functionality of the service. In addition,
the user might be willing to accept very short disruptions if they do rarely appear.

• The space resolution gives the degree of elaborateness of our system model. Can
we consider a server in a computer network as a black box that may be treated as
one component in a system? This might be appropriate for reliability evaluation in
a “large scale”, for topological measures, or the computation of the connectedness
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probability. However, if we investigate problems of throughput or packet delay,
then the inner structure of a server becomes important. In this case, the inclusion
of queue parameters and network protocol details can be necessary.

For long-term investigation of network reliability, a partition of the process of reliability
analysis in different phases may be necessary. These phases correspond to steps of
a communication protocol. Connection establishment, network service in operation
(user communication), and connection termination require different resources of a
communication network and hence different approaches of reliability analysis.
Almost all modern communication networks have a layered structure. The most

prominent model for a layered network structure is the OSI model (Open Systems
Interconnection). Only the OSI top layers are relevant for reliability analysis of user
services. However, a more detailed analysis of selected connection properties may involve
even the physical layer.

3 Errors, Faults, and Failures

A communication network as well as any other technical system is susceptible to different
kinds of failures. Random failures are unpredictable failures that have a great variety
of possible causes: technical defects of electronic components due to stress, material
defects (wear), transmission errors of radio relays caused by bad weather conditions,
electricity outage, submarine cable disruption, malfunction due to improper software
design, human operator errors, etc. An assumption (or at least a hope) in reliability
analysis is that we can somehow predict or estimate probabilities of component failures.
A solid foundation for reliability estimation is the long-term observation of equivalent
or similar systems and components. There are well-established methods in statistics in
order to estimate probabilities from observed frequencies of failures. A quite different
cause of failure is a malicious attack. We may assume that a clever attacker searches the
weakest point of the network or a component whose destruction causes the maximum
loss of functionality.

Figure 2: Threats to the operation of a communication network

Figure 2 shows the classification of threats to proper operation of a communication
network. Threats that origin from random causes are in the main interest of reliability
analysis whereas threats by human attackers with the aim to cause maximum system
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damage are in the focus of security analysis. We will show in due course that these two
fields, reliability and security, have some interrelations.
Sometimes it may be useful to distinguish between errors, faults, and failures. The

term error is often used to describe improper behavior of components like erroneous
computation results or even single bits that are changed during transmission, but without
any influence to system operation due to correction methods or irrelevance. Faults are
breaks of components that change the system but without any effect to the service
in question as the are bridged by proper operating components, for instance via hot
redundancy or rerouting. Thus faults need some action from the operator, but perhaps
within a normal period of maintenance. The most serious system impact is caused by a
failure, which implies some loss of functionality.
According to the classification of threats, we distinguish between reliability measures

and security measures. First we have to define what a “properly operating network”
is. A special service that we expect to be provided by the communication network is
characterized by a set of parameters that may include connection, throughput, delay
limits, etc. Thus we can assume that we are able to verify whether the network is in in
operating state (intact). The state of the system depends on the states of its components.
In the simplest case, a component can be in exactly one of two states, namely in operating
state or in failure state. We assume that we can uniquely determine the state of the
system from all its component states. A system that can assume only two states is
called a binary system. The components of a binary system are also assumed to be in
one of the two states. Sometimes we can consider components as binary even if their
function degrades continuously. In this case we may define a threshold for a component
parameter that allows to distinguish the states of proper operation and failure. Figure
3 gives an overview about some deterministic and stochastich reliability measures for
communication networks.

Figure 3: An overview about network reliability measures

4 Measures

A nice overview on definition, usage, and interrelations of terms from the area of network
dependability is given by Al-Kuwaiti et al. in [1]. As we are mainly concerned with
reliability problems of communication networks, the following collection of terms focuses
on reliability measures.
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Reliability

The reliability of a system (or a component) is the probability that the system remains
in operating state during a given period of time. In order to establish a more precise
definition, we introduce a state variable

Z(t) =

{
1 if the system is intact at time t,
0 otherwise.

The lifetime of a system, denoted by T , is real-valued random variable that is closely
related to state of the system:

Z(t) =

{
1 if t < T,
0 otherwise.

The lifetime distribution function, denoted by F (t), is defined by

F (t) = Pr(T < t).

The reliability function or survival function is defined by R(t) = 1− F (t).

Redundancy

The standard method in order to increase system reliability is redundancy. That is
the insertion of additional components in a system that can replace failed components.
One possibility to ensure redundancy is the parallel operation of equivalent components.
A second way is to keep one component in reserve that is switched into operation as
soon as the primary component fails. Voting is a special kind of redundancy that
is employed for sensor and computing devices. A collection of equivalent sensors or
processors deliver signals to a voter that decides via majority rules the “correct value”. In
communication networks, an even more sophisticated concept of redundancy is realized
by failure-redundant routing protocols.

Availability

The availability is the proportion of time that a component is in operating state. Let
Tup be the time in which a component is in operating state and Tdown the time where
the component is in failure state. Then the availability is defined by

a :=
ETup

ETup + ETdown

,

which means that the definition of availability is suitable for systems with repair. The
availability is the probability to find a system in operating state at randomly selected
point of time. The reliability is the probability that a system is at time t still operating
on condition it was in operating state at time 0.

Performance

Performance is a measure of how well a system or a component functions [12]. In
communication networks, performance refers to a measure of service quality such as
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packed failure rate, latency, throughput, available channel bandwidth. A general analytic
approach to performance is given by

P =
EX

maxX
,

where X is a non-negative real random variable describing the performance. In network
reliability, the edge connectivity of a graph with randomly failing edges could provide a
suitable measure of performance.

Vulnerability

The term vulnerability is used to describe the dependence of the operation of a system
on random failures of its components or malicious attacks. Let F = {f1, . . . , fk} be a
set of failure states of a given system S and pi the probability that S is in failure state
fi. Assume that there is a positive weight wi assigned to each failure state fi, such
that a higher value of a weight corresponds to more severe “damage” of the system
functionality. Then the vulnerability of S is given by

v =
k∑

i=1

piwi.

Communication networks are modeled by directed or undirected graphs. A natural
measure of vulnerability of a graph is the minimum number of edges or vertices that
have to be removed in order to destroy its connectedness. In [11] the vulnerability of a
network with respect to betweenness measures is investigated.
A more general discussion of vulnerability measures is given in [7]. We denote by G

the set of all finite undirected graphs. (If necessary, we can restrict G to a subclass of
graphs, we can consider directed graphs, or even more general classes of systems.) Let
A be a nonempty set and f → A be a map. We call f a vulnerability measure [7] if the
following conditions are satisfied:

• The set A is ordered (or partially ordered). This property permits the comparison
of networks and systems.

• The map f is monotone with respect to failure of components (edges or vertices),
that is

f(G− x) ≤ f(G)

for any edge x (or for any vertex x).

• A vulnerability measure should be sensitive with respect to failures of any relevant
components. As an example, we define

f(G) =

{
1 if G is connected
0 otherwise

for any graph G ∈ G. The codomain, {0, 1}, of this function is an linearly ordered
set and f is monotone. However, this measure is not sensitive as the only edges
that causes a change of f(G) are bridges. One way to improve the sensitivity
of this function is to measure the “strength of connectedness”, for instance, by
employing the edge or vertex connectivity.

• Two networks in parallel connection should be less vulnerable than the same two
networks in a series connection.
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Resilience

The resilience is the ability of a networks or system to survive and return to normal
operation despite of threats. Resilience describes how quickly a system is likely to recover
from failure [13]. A resilient network routing infrastructure, for example, is expected to
continue operating above a given minimum service level, even under localized failures,
disruptions or attacks [4].

Survivability

Survivability is the ability of a system to continue functioning after the failure of some
of its components.

Security

The concept of network security is related to protection from unwanted or prohibited
actions such as the access to confidential data. Security measures also includes procedures
to guarantee confidentiality, integrity, and trustworthiness of network services. The
interdependence between reliability and security becomes obvious when we consider
possibilities of unauthorized data access caused by system failures. Security analysis
deals with the evaluation of damage that can be caused by system intruders, the location
of weak points (components) of a network, possible scenarios of attack, and possible
security lacks caused by malfunctioning components.
As security concerns in communication networks result generally from possible mali-

cious attacks rather than from random faults, methods of probability theory are less
successful in security analysis. The description of security threats has often a more
qualitative character.
The report by Neumann, [19], provides a comprehensive survey on survivability with

a strong focus on network security measures.

Safety

The analysis of safety is of special importance for car-communication networks. Assume
that we have established a car-to-car communication system that permits emergency
stopping of cars via warning massages that are transmitted from car to car. Can
we ensure that the car is safe in case of transmission errors? Is there a danger of
automatically activating the brakes without any existing hazardous situation? The main
objective of safety analysis is to discover system states that might imply catastrophic
consequences on the user or the environment.

5 Mathematical Models for Communication

Networks

A natural supposition in network reliability analysis is that the topology of the commu-
nication network is known. The set of components can be split into two main classes.
The first class comprises servers, routers, user equipment (mobile phones, smartphones,
vehicular on-board units in car-communication systems, switches, data bases. Entities
of this class of components send and receive messages. They form the vertices (nodes)
of a network. The second class consists of transmission channels, which may be realized
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as fiber optic cables, copper wires, or wireless communication channels. Communication
channels are called simplex communication and duplex communication channels if the
communication is in only one direction and in both directions possible, respectively.

5.1 Graphs

A suitable mathematical model for the topology of a communication network is an
undirected or directed graph. An undirected graph is a pair G = (V,E) consisting of a
finite set of vertices and a finite set of edges. In addition, there is an incidence function
φ : E → {{u, v} | u, v ∈ V } that assigns an unordered pair of vertices to each edge of
the graph. Figure 4 shows an example graph. For a deeper introduction into graph
theory, we recommend the books [22] and [5].

Figure 4: An undirected graph

A walk in a graph G is an alternating sequence,

v1, e1, v2, e2, . . . , vk−1, ek−1, vk,

of vertices and edges of G, such that the edge ei has the end vertices vi and vi+1 for
i = 1, . . . , k − 1. A path is a walk without any vertex repetitions. Consequently, a path
does not traverse the same edge twice. A graph G = (V,E) is connected if there exists
a path between any two vertices of G. A closed walk in a graph G is a walk for which
start and terminal vertex coincide. A cycle in G is a closed walk in which no vertex,
except start and terminal vertex, is traversed twice. A tree is a connected graph without
cycles.
In many applications of graphs, we assign weights to the vertices or edges of a graph. A

weighted graph is also called a network. Possible weights of vertices are server reliability,
server capacity, delay time, cost, and others. An edge of a graph may be weighted with
its reliability, length, capacity, or cost.
Two edges e = u, v and f = u, v that have the same endvertices are called parallel.

An edge e = v, v for which the two endvertices coincide is called a loop. A graph G is
called simple if G has neither loops nor parallel edges. As loops usually does not appear
in network reliability, we assume that all graph considered here are loop-free. Parallel
edges in graphs and networks can often be replaced by a single edge with a suitably
chosen weight. Hence we can often restrict our attention to simple graphs.
A graph H = (W,F ) is a subgraph of a graph G = (V,E) if W ⊆ V and F ⊆ E. In

case W = V we call H a spanning subgraph. Let X ⊆ V be a given vertex subset. The
induced subgraph G[X] of G = (V,E) is a subgraph with vertex set X and all edges
of E that have both endvertices in X. A spanning tree of G is a connected cycle-free
spanning subgraph of G. Spanning trees are important structures in network reliability
as the form minimal subgraphs that guarantee the existence of paths between any pair
of vertices.
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We introduce some special graph that frequently appear in applications. An isolated
vertex of a graph G = (V,E) is a vertex that is not incident to any edge of G. The
empty graph, denoted by En, consists of n isolated vertices. The complete graph Kn

is a simple graph in which any two vertices are adjacent. The path Pn has vertex set
{1, . . . , n} and edge set {{1, 2}, . . . , {n− 1, n}}. Introducing the additional edge {1, n}
in the cycle Pn results in a cycle Cn.
In a directed graph or short digraph G = (V,E), the edge set E consists of directed

edges, which are also called arcs. An arc e = (u, v) is represented as an ordered pair of
vertices, where u is the tail and v the head of e. In a drawing of a digraph, an arc is
depicted as an arrow. Figure 5 shows a digraph with nine arcs.

Figure 5: A digraph

A digraph without any directed cycle is called acyclic. Acyclic digraphs are important
for the construction of routing tables.

5.2 Monotone Binary Systems

We consider now a mathematical model for communication networks that is suited for
reliability modeling of more general systems than networks, too. We assume that a
system, denoted by S, consists of n components, which we simply denote by 1, . . . , n.
Each component can be in one of two states, either failed or operating. A state variable

Xi =

{
1 if i is in operating state,
0 if i is in failure state.

indicates for each component i the corresponding state. We call S a monotone binary
system if the following assumptions are satisfied:

• The components of the system can assume two states, failure state and operating
state.

• The systems itself can also assume exactly these two states.

• The state of the system is uniquely defined by the states of all of its components.
The structure function is a mapping ϕ : {0, 1}n → {0, 1} with

ϕ(X) = ϕ(X1, . . . , Xn) =

{
1 if S is in operating state,
0 if S is in failure state,

where X = (X1, . . . , Xn) ∈ {0, 1}n denotes the state vector. The first three
conditions define a binary system.

• The system S is monotone, which means that X ≤ Y implies ϕ(X) ≤ ϕ(Y). Here
we use the standard order relation for vectors:

X ≤ Y ⇐⇒ Xi ≤ Yi for i = 1, . . . n
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• The system S does not contain irrelevant components : Let X ∈ {0, 1}n be a given
state vector. We denote by X0,i the vector obtained from X by setting Xi = 0. In
the same vein X1,i denotes the vector obtained from X by setting Xi = 1. For each
i ∈ {1, . . . , n}, there exists a vector X ∈ {0, 1}n such that ϕ(X0,i) < ϕ(X1,i). As a
consequence of this assumption, each single component can change the state of the
system (given that the other components are in an appropriate state). Observe
that this property together with the monotonicity of S imply that ϕ(0) = 0 and
ϕ(1) = 1. Here 0 and 1 denote the all-0 and the all-1 vector, respectively.

We define the following operations for binary variables:

x ∨ y = max{x, y} = x+ y − x · y
x ∧ y = min{x, y} = x · y

Let X ∈ {0, 1}n be a state vector with ϕ(X) = 1 and A = {i | Xi = 1}. The the set
of components A is called a path set of the monotone binary system. Consequently,
a System S is in operating state if and only if all components of a path set of S are
in operating state. Now let X ∈ {0, 1}n be a state vector of S with ϕ(X) = 0 and
B = {i | Xi = 0}. Then B is a cut set of S. We denote by P(S) the set of all path sets
of S and by C(S) the set of all cut sets of S. The structure function satisfies (see [3])

ϕ(X) =
∨

A∈P(S)

∧
i∈A

Xi (1)

= 1−
∨

B∈C(S)

∧
i∈B

(1−Xi). (2)

Assume now that the components of the monotone binary system fail randomly and
independently. Then the state of component i is given by the random variable Xi, that is
from now on we consider the state variables as random binary variables. Let qi = 1− p1
the failure probability of component i for i = 1, . . . , n. Consequently, we obtain

Pr({Xi = 1}) = EXi = pi, i = 1, . . . , n.

The system reliability of a system S is the probability

R(S) = Pr({XS = 1}) = EXS = Pr({ϕ(X) = 1}).

The system reliability can be represented according to Equation (1) by

R(S) =
∑

A∈P(S)

∏
i∈A

pi
∏

i∈{1,...,n}\A
(1− pi).

The cut set representation follows from Equation (2):

R(S) = 1−
∑

B∈C(S)

∏
i∈B

(1− pi)
∏

i∈{1,...,n}\B
pi.
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5.3 Markov Chains

As in the last Section, we presuppose that the components of a communication network
(vertices and edges) can assume certain states. Now we restrict the set of states of
component i not necessarily to {0, 1} but to an arbitrary finite set Si. Then the state
space of the system is defined by

S =
n⊗

i=1

Si.

We assume here that a change of states occurs only at discrete time steps, which we
identify with the set of non-negative integers N = {0, 1, 2, . . .}. Then a random process
{Xi}i∈N, where the Xi are random variables with range S for i = 1, . . . , n, is a Markov
chain if

Pr(Xn+1 = x | Xn = xn, Xn−1 = xn−1, . . . , X0 = x0) = Pr(Xn+1 = x | Xn = xn)

is valid for all n ∈ N and for all x0, . . . , xn, x ∈ S. This means that the probability of

Figure 6: A Markov graph

transition from a state x at the time n into a state y at the time n+ 1 does not depend
on states of the random Markov chain at points of time earlier than n. This is the
reason why a Markov chain is called a memoryless stochastic process. Many classical
textbooks in probability theory, such as [9] and [10], provide a good introduction to
Markov chains.
The probability

pij(t) = Pr(Xt+1 = j | Xt = i) i, j ∈ S, t ∈ N

is called transition probability of the Markov chain. The transition matrix of the Markov
chain is defined by P (t) = (pij(t))i,j∈S. one way to represent a Markov chain is the
Markov graph, which is a digraph whose vertices correspond to states of the Markov
chain. The arcs of the Markov graph represent transitions between states. The are
weighted wit the corresponding transition probability. Figure 6 shows the Markov graph
of a Markov chain with five states.

6 Routing

The classic method of routing in the Internet is Open Shortest Path First (OSPF). It is
used to rout packets within one autonomous system (AS). The routing between different
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autonomous systems is controlled by the Border Gateway Protocol (BGP). Based on
the IP address of a packet, it uses shortest paths in the network. The assigned length of
paths (routing metric) results from costs that depend of achievable transmission rates,
path priorities (e.g. internal path first), and measured link quality. The more advanced
Resource Reservation Protocol (RSVP) permits in addition service-dependent resource
allocation. OSPF adopts to link failures or changes in the topology of the network.
It provides also routing methods that support broadcast processes. Wireless ad-hoc
networks use flooding algorithms in order send messages to a destination point without
knowing its location. Flooding is a routing method in which incoming packet are sent
along any edge with exception of that one it arrived on.

Assume we want to investigate the reachability of given destination vertex t in a
network from a specified source vertex s. If the routing between these two vertices is
performed in such a way that only shortest paths from s to t are used then we can
represent the possibilities of forwarding of packets by an acyclic digraph. In this case,
the additional routing information simplifies network reliability analysis.

Routing in mobile ad-hoc networks (MANET) is completely different from Internet
routing. As there is no fixed structure in a MANET, each host serves also as a
router. There can be no constant routing tables as the neighborhood of vertices changes
perpetually. Consequently, routing protocols must be adaptive to changing network
topology. Path between source and terminal vertices in MANETs are established by
flooding methods. In order to maintain paths, multipath routing methods are proposed,
see [18].

We can classify routing protocols for mobile ad-hoc networks into two categories,
namely proactive routing and reactive routing. Proactive routing means that routing
paths (shortest path) are computed prior to any message transfer requests. In a reactive
routing process, the path from source to destination is established when needed.

In order to establish a reliable routing scheme for safety-critical applications in mobile
ad-hoc networks, a classification of priority levels of messages is introduced in [16]:

1. Emergency warning messages have to be immediately transmitted to all cars in
reach. This class comprises safety messages that make other cars are aware of
hazardous conditions. Messages of this class are transferred to all neighbors via
broadcast with a given number of repetitions.

2. Long-range emergency notification messages are messages that require quick and
guaranteed delivery as, for instance, vehicle-based road condition warnings. Class-2
messages are sent via one-time multi-hop broadcast.

3. Routine safety messages have to be transmitted regularly but with least priority as
the concern more general car measurement reports. This messages are broadcasted
once to the neighbors (on-hop).

In vehicle-to-roadside communication, geometric routing (also known as geographic
routing or as position-based routing) can be applied. In this case, we assume that a vertex
(a car) knows its own position as well as the position of the destination of a message
to be sent. In addition, we suppose that each vertex in the network knows besides its
own position the positions of all its neighbors, too. The the simplest routing scheme
that can be used is greedy forwarding, where in each step the message is transferred to a
neighbor vertex that is closer to the destination.
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Table 1: Routing methods for ad-hoc networks

Routing Properties Sources

distance vector proactive, update [17]

via periodic broacast

link state proactive, update:

incremental, triggered

dynamic source reactive [14]

geographic position based [6, 15, 20]

dominating-set-based connected backbone [8, 23]

Table 1 shows some routing methods that are suitable for wireless ad-hoc networks.
The hitherto presented routing methods provide only a small part of an existing huge
variety of different routing protocols for ad-hoc networks. An overview about different
routing methods for ad-hoc networks is given in [2].
An important aspect in modeling routing is that transmission can be unidirectional.

Hence in some case digraphs rather than graphs provide the appropriate model for
routing processes.
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Isolated Vertices in Random Graphs
Markus Dod

1
and Peter Tittmann

Reliability of communication networks has become a key factor in our modern highly
interconnected world. Power grids, traffic management systems, enterprise data networks,
and public switched telephone networks are examples of communication systems with a
high demand for reliability. The mathematical model for the topology of a communication
network is an undirected or directed graph. Mathematical network reliability research
has been initiated with the pioneering work by Moore and Shannon [7]. Since then the
literature on this topic has grown enormously, for some milestones, see [3, 8, 9]. We
introduce in this chapter a new reliability measure which is an upper bound for the
network reliability. It has nice connections to different counting problems in graphs.

In the following, we assume that the vertices of the graph are perfectly reliable and
the edges fail independently with probability q. If the edge failure probability q is small
(which is the case for many practical applications), then the probability of a single edge
failure is often several orders of magnitude higher than the probability of a simultaneous
failure of two or more edges. If a random graph with small edge failure probability
becomes disconnected, then most likely a single vertex is separated. We denote the
probability that a given graph G has no isolated vertices by Piso(G). Additionally, we
denote with R(G) the probability that the graph G is connected.

Let G = (V,E) be a graph of order n and size m. The vertex-induced subgraph of G
with vertex set W , W ⊆ V , is denoted by G[W ] = (W,EG(W )), where the edge set is
defined by

EG(W ) = {{u, v} ∈ E | u ∈ W, v ∈ W}.

If the considered graph is known from the context, then we write E(W ) instead of
EG(W ). The spanning subgraph G〈F 〉 for a edge subset F ⊆ E is the graph

G〈F 〉 = (V, F ).

Let ∂GW be the set of edges of G that have exactly one vertex in W :

∂GW = {{u, v} ∈ E | u ∈ W, v /∈ W}.

Again, if G is clear from the context, then we use the short form ∂W .

The open neighborhood N(v) of a vertex in G is defined by

N(v) = {w ∈ V | {v, w} ∈ E}.

The closed neighborhood of v is N [v] = N(v) ∪ {v}.

1This research was supported by the ESF and a scholarship from the State of Saxony.
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1 The Extended Cut Polynomial

The computation of the probability that there exist at least one isolated vertex is a hard
task. To prove some results for this parameter we first study a more general counting
polynomial. The extended cut polynomial of G is defined by

J(G; x, z) =
∑
W⊆V

x|W |z|∂W |+|E(W )|. (1)

Let uij(G) be the number of vertex subsets of V with cardinality i such that the induced
subgraph has size j:

uij(G) = |{W | W ⊆ V, |W | = i, |E(W )| = j}|.

The numbers uij(G) permit the following representation of the extended cut polynomial:

J(G; x, z) = xnym
n∑

i=0

m∑
j=0

uij(G)x−iz−j.

The empty graph En satisfies J(En; x, z) = (1 + x)n, which follows easily by the
definition of the extended cut polynomial. A vertex subset W of cardinality k in the
complete graph Kn induces a complete subgraph of order k, which gives

|E(W )|+ |∂W | =
(
k

2

)
+ k(n− k) = nk −

(
k + 1

2

)
.

Consequently, we obtain

J(Kn; x, z) =
n∑

k=0

(
n

k

)
xkznk−(

k+1
2 ). (2)

In order to prove some interesting properties of the extended cut polynomial, we
consider in the following graphs that might have loops. For a graph G and an edge
e = {u, v} of G, we define G ◦ e as the graph obtained from G by removal of the vertices
u and v and attaching loops to vertices in G−u−v. Each vertex w ∈ V \{u, v} receives
exactly |N(w) ∩ {u, v}| new loops. In case e is a loop of G attached to vertex v, we
define G ◦ e as the graph obtained from G− v by attaching one additional loop to each
vertex of N(v). Let v be a vertex of the graph G = (V,E). The graph G ◦ v is obtained
from G− v by attaching loops to all neighbors of v, one for each. Figure 1 illustrates
these operations.

Theorem 1 (Loop reduction). Let G = (V,E) be a loopless graph and G′ the graph
obtained from G by attaching one loop to each vertex of G. Then

J(G′; x, z) = J(G; xz, z).

Proof. We use the definition of the polynomial J(G; x, z). Observe that the inclusion of
a vertex v in W automatically extends ∂W by the corresponding loop.
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Figure 1: Edge and vertex operations.

Theorem 2. Let G = (V,E) be a graph with n vertices, m =
(
n
2

)
, and

J(G; x, z) =
n∑

i=0

m∑
j=0

aijx
izj.

Then the extended cut polynomial of the complement Ḡ of G is

J(Ḡ; x, z) =
n∑

i=0

m∑
j=0

aijx
iz

i
2
(2n−i−1)−j.

Proof. By simple counting of edges we obtain

J(Ḡ; x, z) =
∑
W⊆V

xW z|EḠ(W )|+|∂ḠW |

=
∑
W⊆V

x|W |z(
|W |
2 )−|EG(W )|+|W |(n−|W |)−|∂GW |,

which gives with |W | = i and |EG(W )|+ |∂GW | = j the statement.

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two vertex disjoint graphs, then
the union G ∪H is the graph (V (G) ∪ V (H), E(G) ∪ E(H)). The join G ∗H of two
graphs G = (V (G), E(G)) and H = (V (H), E(H)) is the graph union G ∪H together
with all the edges joining V (G) and V (H).

Theorem 3. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs, with
|V (G)| = n and |V (H)| = m. Furthermore, let ai = [xi]J(G; x, z) and bi = [xi]J(H; x, z).
Then

J(G ∗H; x, z) =
n∑

i=0

m∑
j=0

aibjx
i+jzim+jn−ij.

Proof. Let W ⊆ V (G) and X ⊆ V (H) be two vertex subsets with i and j vertices,
respectively. Then the term zim+jn−ij counts the number of edges between these two
vertex sets in G ∗H. The polynomial ai counts the number of incident edges to a
vertex subset of size i in G. Summing over all possible sizes of the two sets gives the
theorem.

Corollary 4. Let G = (V,E) be an arbitrary graph with n vertices. Then

J(G ∗K1; x, z) = xznJ(G; x, z) + J(G; xz, z).
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1.1 Recurrence Formulae

In order to derive some recurrence equations for the extended cut polynomial with
respect to elementary edge and vertex operations, we need the following statement.

Lemma 5. Let G be a graph with k components G1 = (V1, E1), . . . , Gk = (Vk, Ek). Then

J(G; x, z) =
k∏

i=1

J(Gi; x, z).

Proof. Using the Definition of the extended cut polynomial yields

J(G; x, z) =
∑
W⊆V

x|W |z|∂W |+|E(W )|

=
∑
W⊆V

x|W∩V1|+...+|W∩Vk|z|∂W∩E1|+|E(W )∩E1|+...+|∂W∩Ek|+|E(W )∩Ek|

=
∑

W1⊆V1

x|W1|z|∂W1|+|E(W1)| · · ·
∑

Wk⊆Vk

x|Wk|z|∂Wk|+|E(Wk)|

= J(G1; x, z) · · · J(Gk; x, z).

Theorem 6. Let G = (V,E) be a graph and e = {u, v} ∈ E. Then

J(G; x, z) = z J(G− e; x, z) + (1− z)J(G ◦ e; x, z).

Let E∗
n be the graph that is obtained from the empty graph of order n by attaching k(v),

for k(v) ≥ 1, loops to each vertex v. Then the extended cut polynomial of the graph is∏
v∈V

(1 + x zdeg v).

These properties uniquely determine the polynomial J(G; x, y) for any graph G.

Proof. Let Hr be a graph consisting of one vertex with r loops attached. Then we find

J(Hr; x, z) = 1 + xzr (3)

according to the definition of the extended cut polynomial.
Lemma 5 gives together with Equation (3)

J(E∗
n; x, z) =

∏
v∈V

(1 + x zdeg v).

Now we split the defining sum of the extended cut polynomial as follows:

J(G; x, z) =
∑
W⊆V

x|W |z|∂W |+|E(W )|

=
∑
W⊆V

{u,v}∩W �=∅

x|W |z|∂W |+|E(W )| +
∑

W⊆V \{u,v}
x|W |z|∂W |+|E(W )|.
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If {u, v} ∩W �= ∅, then either e ∈ ∂W or e ∈ E(W ), which yields∑
W⊆V

{u,v}∩W �=∅

x|W |z|∂W |+|E(W )| = z
∑
W⊆V

{u,v}∩W �=∅

x|W |z|∂G−eW |+|EG−e(W )|

and hence

J(G; x, z) = z
∑
W⊆V

x|W |z|∂G−eW |+|EG−e(W )| − z
∑

W⊆V \{u,v}
x|W |z|∂W |+|E(W )|

+
∑

W⊆V \{u,v}
x|W |z|∂W |+|E(W )|

= zJ(G− e; x, z)− z
∑

W⊆V \{u,v}
x|W |z|∂W |+|E(W )|

+
∑

W⊆V \{u,v}
x|W |z|∂W |+|E(W )|.

For all W ⊆ V \{u, v}, we have ∂GW = ∂G◦eW and EG(W ) = EG◦e(W ), which provides

J(G; x, z) = zJ(G− e; x, z)− z
∑

W⊆V \{u,v}
x|W |z|∂G◦eW |+|EG◦e(W )|

+
∑

W⊆V \{u,v}
x|W |z|∂G◦eW |+|EG◦e(W )|

= zJ(G− e; x, z) + (1− z)J(G ◦ e; x, z).

Theorem 7. Let G = (V,E) be a graph and v ∈ V . Then

J(G; x, z) = xzdeg vJ(G− v; x, z) + J(G ◦ v; x, z).
Proof. Consider the polynomial

J(G; x, z) =
∑
W⊆V

x|W |z|∂W |+|E(W )|.

If a vertex v ∈ V is included in W , then all edges that are incident to v are counted
with the exponent of z, which gives the factor xzdeg v. Let ∂v be the set of edges of G
that have v as an end vertex. The polynomial J(G; x, z) can be decomposed as follows:∑

W⊆V

x|W |z|∂W |+|E(W )| =
∑

v∈W⊆V

x|W |z|∂W |+|E(W )| +
∑

W⊆V \{v}
x|W |z|∂W |+|E(W )|

= xzdeg v
∑

v∈W⊆V

x|W |−1z|∂W |+|E(W )|−deg v

+
∑

W⊆V \{v}
x|W |z|∂W |+|E(W )|

= xzdeg v
∑

W⊆V \{v}
x|W |z|∂W\∂v|+|E(W )|−deg v

+
∑

W⊆V \{v}
x|W |z|∂W |+|E(W )|

= xzdeg vJ(G− v; x, z) + J(G ◦ v; x, z).
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Using the previous proved recurrence equation we can obtain equations for the path
Pn and the cycle Cn.

Corollary 8. Let Pn be the path with n vertices and pn = J(Pn; x, z). Then

pn =
(1− (x+ 2)z + f)gn + ((x+ 2)z − 1 + f)hn

2n+1zf
,

with

f =
√
xz((x+ 4)z − 2) + 1,

gn = (xz − f + 1)n and

hn = (xz + f + 1)n.

Proof. The path P ′
n can be obtained from the path Pn by adding a loop to the first

vertex of the path. We write short p′n for the polynomial J(P ′
n; x, z). Using Theorem 7

we obtain for the path Pn

pn = xzpn−1 + p′n−1

and for the path P ′
n

p′n = xz2pn−1 + p′n−1.

Solving these recurrence equations with the initial conditions

p1 = 1 + x and p′1 = 1 + xz

gives the theorem.

1.2 Regular Graphs and Cuts

Let G = (V,E) be a regular graph of degree r. Then we have for any subset W ⊆ V
the relation r|W | = 2|E(W )|+ |∂W |, which yields

J(G; x, z) =
∑
W⊆V

(
xz

r
2

)|W |
z

1
2
|∂W |. (4)

The substitutions x = t−r and z = t2 give

1

2
J(G; t−r, t2) =

1

2

∑
W⊆V

t|∂W | = C(G, t).

The cut polynomial C(G, t) is the ordinary generating function for the number of cuts
of a given size of G. The division by 2 takes into account that each cut of a graph
G = (V,E) that is generated by a vertex subset W is also generated by its complement
V \W .
The cut polynomial of the cube graph Q3 presented in Figure 2 is

C(Q3, t) = t12 + 8t9 + 15t8 + 24t7 + 32t6 + 24t5 + 15t4 + 8t3 + 1.

The eight cuts of size 3 correspond to the vertices of Q3. A cut of cardinality 4 arises
when we choose two end vertices of an edge or four vertices of a square, where in each
case the two parallel squares generate the same cut. There is a unique cut of size 12 that
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Figure 2: The cube

consists of all edges of the cube, which is generated by selecting a maximum independent
set for W .
Let G = (V,E) be a graph, then the Ising polynomial Z(G; x, y) [2] is defined as

follows
Z(G; x, y) = xnym

∑
W⊆V

x−|W |y−|∂W |.

It follows directly from Equation (4) that the polynomial J(G; ut−r, t2) is equivalent
to the Ising polynomial if G is r-regular.

Definition 9. [4] Let G = (V,E) be a graph. Then the bipartition polynomial is defined
in the following way

B(G; x, y, z) =
∑
W⊆V

x|W |
∑

F⊆δW

y|N(V,F )(W )|z|F |.

The bipartition polynomial has some nice representations (see [4]). One of these
representations is a multiplicative representation, which is useful for many proofs.

Theorem 10. [4] The bipartition polynomial has the following multiplicative represen-
tation:

B(G; x, y, z) =
∑
W⊆V

x|W |
∏

v∈NG(W )

[
y
[
(1 + z)|NG(v)∩W | − 1

]
+ 1

]
. (5)

Theorem 11. Let G = (V,E) be a r-regular graph, B(G; x, y, z) its bipartition polyno-
mial and J(G; x, y) its extended cut polynomial. Then

J(G; x, y) = B(G; x
√
yr, 1,

√
y − 1).

Proof. If G is a r-regular graph, then r|W | = 2|E(W )|+ |∂W | and therefore |E(W )| =
1/2(r|W | − |∂W |). Using Equation (5) we can verify that

B(G; xtr, 1, z − 1) =
∑
W⊆V

x|W |tr|W |z|∂W |.

Now replacing t with
√
yr and z with y√

y
gives

∑
W⊆V

x|W |
√
yr|W |

(
y√
y

)|∂W |
=
∑
W⊆V

x|W |y1/2(r|W |−|∂W |)y|∂W |

=
∑
W⊆V

x|W |y|E(W )|+|∂W |

which proves the theorem.
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1.3 Independence Polynomial and Computational Complexity

In this section we show the connection from the extended cut polynomial to the
independence polynomial. We call a vertex subset W ⊆ V of a graph G independent if
the vertices in W are pairwise non-adjacent.

Definition 12. [6] Let G = (V,E) be a graph. Then the independence polynomial
I(G, x) is the ordinary generating function for the number of independent sets of the
graph:

I(G, x) =
∑
W⊆V

W is independent set

x|W |.

Theorem 13. Let G = (V,E) be a graph of order n and size m. We define the
polynomial J̃ by

J̃(G, x, z) = xnzmJ

(
G;

1

x
,
1

z

)
.

Then the independence polynomial of G is given by

I(G, x) = J̃(G; x, 0).

Proof. It suffices to observe that the number of vertex covers of cardinality k of G is
the coefficient of xkzm in J(G; x, z). The theorem follows as a set W ⊆ V is a vertex
cover of G if and only if V \W is independent in G.

As the problem of deciding whether a given graph has an independent set of size
k is known to be NP-complete, the computation of J(G; x, z) is an computationally
intractable problem, too.

1.4 Edge Covers

An edge cover in a graph G = (V,E) is an edge set F ⊆ E such that each vertex of G is
end vertex of at least one edge of F . Akbari et.al defined the edge-cover polynomial
which is the ordinary generating function for the number of edge-covers of a graph.

Definition 14. [1] Let G = (V,E) be a graph. Then the edge-cover polynomial E(G, z)
of the graph is defined as

E(G, z) =
∑
F⊆E

F is edge-cover

z|F |.

Lemma 15. [1] Let G = (V,E) be a graph. Then

E(G, z) =
∑
W⊆V

(−1)|W | (1 + z)|E(G−W )| .

The edge-cover polynomial can also be obtained from the extended cut polynomial.
This result also shows that the computation of the extended cut polynomial is in �P .

Theorem 16. Let G = (V,E) be a graph with m edges. Then

E(G, z) = (1 + z)mJ

(
G;−1,

1

1 + z

)
.
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Proof. Substitute x with −1 and z with 1/(1 + x) in Equation (1) gives

(1 + z)mJ

(
G;−1,

1

1 + z

)
=
∑
W⊆V

(−1)|W | (1 + z)m−|∂W |−|E(W )| .

Together with the Lemma 15 the theorem follows.

2 Isolated Vertices

Theorem 17. Let G = (V,E) be a graph with random failing edges. The edges are
assumed to fail independently with identical probability q. Then the probability that G
has no isolated vertex is given by J(G;−1, q).

Proof. Let Av, v ∈ V , be the random event that vertex v is isolated in G. Then the
probability that G has at least one isolated vertex is, according to the inclusion–exclusion
principle,

Pr

(⋃
v∈V

Av

)
=

∑
∅�=W⊆V

(−1)|W |+1 Pr

(⋂
v∈W

Av

)
.

Now observe that

Pr

(⋂
v∈W

Av

)

is just the probability that all edges in E(W )∪∂W fail, which is q|∂W |+|E(W )|, see Figure
3. Taking the complementary event gives the theorem.

Figure 3: A vertex subset

From Theorem 7 and Theorem 17, we get immediately the following statement.

Theorem 18. Let G = (V,E) be a graph. Assume all edges of G fail independently
with identical probability q. Then for each vertex v ∈ V :

Piso(G) = Piso(G ◦ v)− qdeg vPiso(G− v).

This recurrence equation together with the initial value

Piso(Hk) = 1− qk

for the graph Hk consisting of one vertex with k loops provides an algorithm for the
calculation of Piso(G) for any graph G. Theorem 18 can be easily generalized to cover
also graphs with non-identical edge failure probabilities. Let qe be the failure probability
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of edge e, for e ∈ E. We denote by E(v) the set of edges of G that have v as one of
their end vertices. Then

Piso(G) = Piso(G ◦ v)−
∏

e∈E(v)

qePiso(G− v), (6)

where we have to observe that the attached loops in G◦v receive the failure probabilities
of the corresponding edges.
Let e = {u, v} be an edge of G such that deg u = 1. Then clearly a failure of e

generates an isolated vertex, which gives the following reduction of degree-1 vertices:

Piso(G) = (1− qe)Piso((G− u) ◦ v), deg u = 1, e = {u, v}.

The following example shows the application of the reduction and the vertex decomposi-
tion according to Theorem 18 and Equation (6):

Piso

( )
= (1− qd)Piso

( )

= (1− qd)

[
Piso

( )
− qaqcPiso

( )]

= (1− qd)[(1− qaqb)− qaqc(1− qb)]

= 1− qd − qaqb − qaqc + qaqbqc + qaqbqd

+qaqcqd − qaqbqcqd.

As a somehow surprising observation, we can verify that the paths with 3 and 4
vertices, respectively, satisfy

Piso(P3) = Piso(P4) = 1− 2q + q2,

presupposed that all edges fail with identical probability q.
Let H = (V, F ) be a spanning subgraph of G = (V,E). The edge set F of H is an

edge cover of G if and only if H has no isolated vertices. Consequently, we can redefine
Piso(G) as the probability that the set of operating edges of G forms an edge cover of G.
Hence, we get the next lemma.

Lemma 19. Let G = (V,E) be a graph with random failing edges. Then

Piso(G) = (1− p)|E|E(G, p/(1− p)).

Proof. A spanning subgraph G〈F 〉, with F ⊆ E, has no isolated vertex if and only if F
is an edge-cover in G. Therefore,

(1− p)|E|E(G, p/(1− p)) =
∑
F⊆E

F is edge-cover

p|F |(1− p)|E|−|F |

gives the probability that the graph has no isolated vertex.

This lemma shows that the computation of Piso(G) is in �P. But it is possible to find
a lower bound for Piso(G) using the following theorem.
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Theorem 20. [1] Let G = (V,E) be a graph with m edges and no isolated vertex.
Furthermore, let ei(G) be the number of edge-covers with i edges in G and

ẽi(G) =

(
m

i

)
−
∑
v∈V

(
m− d(v)

i

)
.

Then

ei(G) ≥ ẽi(G), ∀i ∈ {1, . . . ,m− 2δ + 1}
ei(G) = ẽi(G), ∀i ∈ {m− 2δ + 2,m}.

We can use this theorem to get a lower bound for Piso(G, p).

Corollary 21. Let G = (V,E) be a graph with m edges and no isolated vertex. Then
for all p ∈ [0, 1]

Piso(G, p) ≥
m∑
i=1

[ẽi(G) ≥ 0]ẽi(G)pi(1− p)m−i.

3 Calculation in Special Graph Classes

Complete and Complete Bipartite Graphs

First we investigate complete graphs for which we can exploit the symmetry in order to
derive explicit expressions for the desired probability. The result can also be obtained
from Equation (2) and the usage of the connection between the extended cut polynomial
and Piso(G).

Theorem 22. If the edges of the complete graph Kn fail independently with probability
q, then the probability that there is exactly one isolated vertex is

nqn−1

[
1−

n−1∑
k=1

(−1)k+1

(
n− 1

k

)
q

k
2
(2n−k−3)

]
.

Proof. First we compute the probability that there exists at least one isolated vertex in
Kn. The probability that a given vertex v is isolated is qn−1. Let Av be the random
event that vertex v is isolated. The probability that at least one vertex is isolated is
given by the principle of inclusion–exclusion,

P

(⋃
v∈V

Av

)
=

∑
∅�=X⊆V

(−1)|X|+1P

(⋂
w∈X

Aw

)
.

In order to ensure that all vertices of a given subset X ⊆ V are isolated, all edges of Kn

with both or one end vertex in X have to be failed, which happens with probability

q|X|(n−|X|)+(|X|
2 ).

This probability does not depend on the set X but only on its cardinality. Hence we
obtain

P

(⋃
v∈V

Av

)
=

∑
∅�=X⊆V

(−1)|X|+1q|X|(n−|X|)+(|X|
2 )

=
n∑

k=1

(−1)k+1

(
n

k

)
qk(n−k)+(k2).



26 Isolated Vertices in Random Graphs

Consequently, the probability that in a complete graph Kn−1 no vertex is isolated
amounts to

1−
n−1∑
k=1

(−1)k+1

(
n− 1

k

)
qk(n−k−1)+(k2) =

n∑
k=1

(−1)k+1

(
n− 1

k

)
q

k
2
(2n−k−3).

The random events “vertex v is the only isolated vertex in Kn” are disjoint for all
v ∈ V (Kn), which gives the statement of the theorem.

The next statement follows directly from the proof.

Corollary 23. Assume the edges of Kn fail independently with probability q. The
probability that there exists an isolated vertex is

1− Piso(Kn) =
n∑

k=1

(−1)k+1

(
n

k

)
qk(n−k)+(k2).

The probability that there are exactly r isolated vertices in Kn is(
n

r

)
q

r
2
(2n−r−1)

[
1−

n−r∑
k=1

(−1)k+1

(
n− r

k

)
q

k
2
(2n−2r−k−1)

]
. (7)

Let Yn be the random variable giving the number of isolated vertices in Kn with
independently failing edges as given in the last corollary. The expected contribution of
a given vertex v ∈ V (Kn) to the number of isolated vertices is the probability that v is
isolated, which is qn−1. Hence, by linearity of expectation, we obtain EYn = nqn−1 for
the expected number of isolated vertices in Kn. Another way to find this expectation is
to use Equation (7), which yields

EYn =
n∑

r=0

r

(
n

r

)
q

r
2
(2n−r−1)

[
1−

n−r∑
k=1

(−1)k+1

(
n− r

k

)
q

k
2
(2n−2r−k−1)

]
.

However, now it seems to be a non-trivial task to verify that the sum on the right-hand
side gives nqn−1.
Now let G = (V,E) be an arbitrary graph whose edges fail independently with given

probability qe, for e ∈ E. We denote by YG the number of isolated vertices of G. Then
we obtain (again by linearity of the expectation)

EYG =
∑
v∈V

∏
e∈E
v∈e

qe.

Theorem 24. Let Ks,t be a complete bipartite graph which edges fail independently with
probability q. Moreover, let s, t ≥ 2. Then

Piso(Ks,t) = qst
s∑

k=0

(−1)s−k

(
s

k

)(
1− qk

qk

)t

.

Proof. It is already known [1] that the edge-cover polynomial of the complete bipartite
graph is

t∑
k=0

(−1)t−k

(
t

k

)
((1 + x)k − 1)s. (8)

Applying Lemma 19 to Equation (8) gives the theorem.
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Paths and Cycles

Next we derive the probability Piso(Cn) of a cycle Cn, supposed that all edges fail
independently with probability q. The key observation is that Cn has no isolated vertices
if and only if the set of failing edges forms a matching (that is a set of edges such that
no two edges share a common end vertex) in Cn. The number of matchings of size k
(k > 0), in the cycle Cn is

n

k

(
n− k − 1

k − 1

)
,

see [5]. Consequently, we get

Piso(Cn) = (1− q)n +

�n
2 �∑

k=1

n

k

(
n− k − 1

k − 1

)
qk(1− q)n−k.

For the path Pn we can use the same idea as for the cycle, except of the fact that the
first edge of both sides has to be intact. The number of matchings of size k, k ≥ 0, in
the path Pn is (

n− k

k

)
.

Thus, we get

Piso(Pn) = (1− q)2
�n−2

2 �∑
k=0

(
n− k − 2

k

)
qk(1− q)n−k−3.

The star Sn with n vertices has n− 1 degree-one vertices and therefore, all edges must
be intact. This gives immediately Piso(Sn) = (1− q)n−1.

4 Conclusion and Open Problems

We could show that the extended cut polynomial offers an interesting way in order to
calculate the probability of non-existence of isolated vertices in graphs with independently
failing edges. It remains to investigate how this measure can be combined with further
structural information, e.g. small cuts, to establish improved bounds for the all-terminal
reliability.
Interesting open problems with relation to the extended cut polynomial are:

• Which graph classes permit a polynomial-time computation of J(G; x, z)?

• Are there other elementary vertex or edge operations in graphs that lead to new
recurrence equations for the extended cut polynomial?

• Can we use reduction (transformations) of the graph in order to calculate J(G; x, z)
more efficiently?

Another open problem is the expansion of the given definition in order to cover also
digraphs and hypergraphs.
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Broadcast in Wireless Ad-hoc
Networks
Sara Kischnick

1
and Peter Tittmann

Network broadcasting offers an efficient and fast method for spreading information that
originates in a single node across a network region. Probabilistic broadcast schemes
seems to be well-suited in order to deal with the rapid change of topology in car-to-car
networks. This chapter provides basic algorithms for random broadcasting in networks
together with its mathematical analysis.

1 Introduction – Broadcasting in Networks

In near future it will be possible that cars can communicate with each other. The
implementation of car-to-car communication will provide a new approach to improving
road safety and traffic efficiency. The applications of car-to-car communication systems
include

• Driver warning in case of approaching emergency vehicles,

• Forwarding information about hazardous locations,

• Information from road side units about construction zones or dangerous states of
road cover,

• Information about traffic density and emergence of traffic jam.

As normal road traffic results in a set of random locations of cars, a car-to-car com-
munication network does not have a predictable structure – it forms a wireless ad-hoc
network. Hence, every car is both a client node in the network and a router. Because
of the high mobility of the communication participating entities, mutual connections
changes very fast. Therefore, the architecture of the network is highly instable.
Fast message forwarding within a network of unknown topology cannot rely on classical

methods like open shortest path routing. An alternative that guaranties minimal delay
is network broadcasting, which is especially appropriate as the relevant information
originates usually in a single car and has to be distributed as quickly as possible across
its neighborhood.
A huge variety of different broadcasting methods has been developed through the

last years. One of the simplest approaches is that each node sends the message to all
neighbors within its transmission range. However, this type of broadcasting scheme
generates high network load – the broadcast storm. The data traffic can be reduced by

1The research is supported by SMWA/BMVI.
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using lifetime counters. A better way to spread the message is flooding [19, p. 427]. The
information will be sent to all neighbors except the sender of the message. A further
method to reduce the broadcast storm is to equip the messages with a sequence number.
Every node will save the number and transmit only messages that have not been sent
previously. Tonguz et al. [20] introduced a broadcast procedure which is particular
for the car-to-car communication – the Distributed Vehicular Broadcast (DV-CAST)
protocol. This method uses the local information of the network topology, especially
the one-hop neighborhood of a car 2.

The topology of a car-to-car communication network can be represented by an
undirected graph G = (V,E) with vertex set V and edge set E. A vertex represents a
car communication unit whereas an edge stands for a wireless communication channel.
The graphs considered here are assumed to be simple (they have neither loops nor
parallel edges) and connected.

Broadcasting is the transfer of a message that resides initially in exactly one vertex of
the network to all other vertices. We distinguish deterministic and random broadcasting
algorithms. Another classification results from local versus global broadcasting. Local
algorithms for broadcasting require only the knowledge of the neighborhood of a vertex
whereas global methods presuppose complete information about the network topology.
Consequently, localized broadcasting is employed in wireless ad-hoc networks.

Figure 1: The hidden node problem

In ad-hoc networks, blind flooding is the simplest broadcast method. Blind flooding
refers to a broadcasting method where each vertex transmits a received packet that has
not already been transmitted by this vertex to all its neighbors. However, blind flooding
has a lot of disadvantages including redundant transfer of messages implying high
network traffic, competition for network resources, and increased frequency of packet
collision, see [11, 13]. A collision is the simultaneous receiving of a broadcast message
from different transmitters in one vertex. Figure 1 illustrates a possible source of packet
collision in wireless ad-hoc networks. The vertices u and w are in the transmission range
of v but u and w cannot reach each other – they are “hidden” from each other. This
problem is referred to as the hidden node problem or as the hidden terminal problem.
Assume that there is a transmission from u to v. As w is not aware of this situation
it might decide to send packets to v causing a collision at v. Possible solutions of the
hidden node problem and arising difficulties are presented in [7, 14, 15].

There are several methods in order to overcome the problems imposed by blind
flooding:

2For more information to this broadcast procedure see Tonguz et al.: “Broadcasting in VANET”
[20] and Tonguz et al.: “On the Broadcast Storm Problem in Ad hoc Wireless Networks” [21]
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• Application of random broadcasting. One way to reduce network traffic in broad-
casting processes is to forward a packet with a given probability p < 1 to a
neighbor. We can clearly expect that with decreasing values of p the probability
to reach all vertices of the network is decreasing, too. A suitable choice of the
parameter p depends also on the edge density of the network.

• Introduction of a hop limit for packets (corresponding to a “time-to-live”). This
parameter also can be used to control random forwarding.

• The vertices of the network can be equipped with a memory in order to ensure
that only packets that are not sent before will be transmitted.

A broadcast process on a graph G = (V,E) is given by a sequence {Xi}i∈I , where
I = N or I = {0, 1, . . . , n} and Xi ∈ V , for all i ∈ I. We call a vertex v ∈ Xt informed at
time t. A vertex that is not informed is called ignorant. We assume that a broadcasting
process has the following properties:

• There is at least one informed vertex at time 0, which gives X0 �= ∅. This
condition ensures that we have a proper broadcasting process, which consists in
the distribution of messages.

• A vertex v that is informed at time t will be informed also at any time t′ with
t′ > t, which means that vertices do not “forget” a message once received. As a
consequence of this requirement, the sequence {Xi}i∈I is monotone increasing over
time.

• For any t ∈ I, we have Xt+1 ⊆ N [Xt]. There is no message forwarding over
distances greater than 1 within one step (one unit of time) possible.

• There is a given broadcasting scheme (a procedure) that assigns a new vertex
subset Xt+1 ⊆ V with Xt ⊆ Xt+1 to any graph G = (V,E) and any vertex subset
Xt ⊆ V . The broadcasting scheme might be deterministic or random.

In this chapter, we investigate different broadcasting schemes. We focus on mathe-
matical modeling rather than protocol implementation details. The main objective
is to distribute a message as fast as possible over the whole network. On the other
hand the message distribution should be performed efficiently with respect to network
load. Well-established broadcast algorithms for computer networks and public switched
telephone networks are inappropriate for ad-hoc networks as they assume complete
knowledge about the network topology.
Observe that we consider broadcasting here in a more general setting as introduced

in other contexts, see for instance [6]. The main difference to some well-investigated
broadcasting schemes is that we allow the simultaneous forwarding from one vertex to
all its neighbors.

2 Random Broadcasting

A well-known method in order to reduce the network load as well as hidden node
problems in broadcasting is the application of randomness. In a random broadcasting
scheme, each informed vertex forwards the message with a certain probability to one ore
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more of its neighbors. There are different problems in social science and epidemiology
that are closely related to broadcasting. A first problem related to broadcasting is rumor
spreading. At time 0 one initial vertex knows a “rumor” that it wants to propagate to
all other vertices of the graph. Each vertex that receives the rumor decides randomly to
propagate it further or to ignore it. The probability of spreading might depend on the
number of neighbors that already know the rumor.
Let us consider the following simple broadcasting scheme. Let G = (V,E) be a simple

undirected graph and s ∈ V . At time 0 there is exactly one informed vertex s. In each
time step the message is independently transferred along the edges of the graph with
probability p. Consequently, if the network is a star with n vertices of degree 1 and the
start vertex s is the central vertex of the star, then the probability Pk that exactly k
outer vertices of the star are informed at time t = 1 is

Pk =

(
n

k

)
pk(1− p)n−k.

Figure 2: Calculation of the transition probability

More generally, we can describe the broadcasting process {Xt} as a homogeneous
Markov chain with state space 2V (the power set of V ). The transition probability is
given by

pAB = Pr({Xt = B} | {Xt−1 = A})

=

{
0 if A � B or B � N [A],∏
v∈B\A

[1− (1− p)|N(v)∩A|]
∏

w∈N [A]\B
(1− p)|N(w)∩A| otherwise.

Figure 2 explains the derivation of the transition probability. A vertex v ∈ B \A has to
be informed at time t. Hence we must ensure that at least one of its already informed
neighbors in A forwards the message to v. There are |N(v) ∩ A| edges linking a vertex
in A to v, which gives the first product of pAB. In order to avoid that any vertex not
belonging to B gets the message, all edges leading from a vertex in A to a vertex in
N [A] \B have to be blocked, which provides the second product. The number of states
of the Markov chain grows exponentially with the order of the graph, which renders the
analysis of the Markov chain a computational hard problem, see also [9].
Figure 3 shows the result of a simulation of a random broadcasting process in a graph

with 70 vertices and 245 edges. In this simulation, the broadcasting process starts in
a vertex of eccentricity 6. The presented diagram shows the time T that is necessary
in order to inform all vertices assuming that the message forwarding probability along
the edges is p. This simulation does not consider any blocking effects as caused by the
hidden node problem. Observe that for p > 0 the expected cover time is finite for any
connected graph.
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Figure 3: Simulation results for the expected cover time

A Vertex-oriented Model

We assume now that each vertex independently sends an information that it has received
at time t at each time t′ > t with probability p to all its neighbors. In contrast to the
edge model, if a vertex sends then all of its neighbors get simultaneously informed. In
order to include the hidden-node problem, we assume that a vertex is not informed if it
simultaneously gets the information from two non-adjacent vertices. Consider, as an
example, the graph shown in Figure 4. We assume that at time 0 the only informed

Figure 4: An example for the vertex-oriented model

vertex is u. Let TA be the expected time until all vertices are informed on condition
that at time 0 exactly the vertices contained in A are informed, where A ⊆ V and
u ∈ A. Clearly, we have TV = 0. The only possible candidate for A besides {u} and V
is B = {u, v, w}. As we deal with hitting times in a Markov chain we obtain the system
of linear equations

T{u} = pTB + (1− p)T{u} + 1

TB = (1− 2p+ 2p2)TB + 1

with the solution

T{u} =
3− 2p

2p− 2p2
.
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This function has a local minimum at p0 =
3−

√
3

2
≈ 0.634. The minimal expected time

is T{u}(p0) = 2 +
√
3 ≈ 3.732.

Figure 5: Hitting time

3 Rainbow Connection in Graphs

In this section, we will show that edge colorings of graphs with special properties provide
suitable mathematical models for random broadcasting processes in networks. In this
section, we introduce the necessary notions from graph coloring theory.
Let G = (V,E) be an undirected graph, k a positive integer, and φ : E → {1, . . . , k}

a map that assigns a color to each edge of G. We call the mapping φ an edge k-coloring
of G. A rainbow path in G is a path such that all of its edges have different color. The
graph G is rainbow connected if there exists a rainbow path between any two vertices
of G. In this case the edge coloring φ is called a rainbow coloring of G. The rainbow
coloring is called a rainbow k-coloring if it uses at most k colors. The rainbow connection
number rc(G) of a graph G is the minimum positive integer k such that G has a rainbow
k-coloring, see [4]. Figure 6 shows a rainbow connected graph. In this graph, the

Figure 6: A graph with a rainbow coloring

path (a, b, d, l, o, r, t) (given as a vertex sequence) is a rainbow path connecting the two
vertices a and t.
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We use in the following the notations n for the order (number of vertices) and m for
the size (number of edges) of a given graph G. Whenever H = (V, F ) is a spanning
subgraph of G = (V,E), we have rc(G) ≤ rc(H). A rainbow colored tree requires as
many colors as it has edges, which gives rc(T ) = n− 1 for any tree T of order n. The
complete graph is the unique simple graph of order n with rainbow connection number 1.
It has been shown in [17] that any connected graph G with minimum degree δ(G) ≥ 3
satisfies rc(G) < 3n

4
. Let G be a connected graph of order n with m edges such that(

n−1
2

)
+ 1 ≤ m ≤

(
n
2

)
− 1, then rc(G) = 2, see [8]. It can be easily verified that a cycle

satisfies rc(Cn) = �n
2
�. Considerably more effort is necessary in order to prove that a

complete bipartite graph satisfies

rc(Ks,t) = min{� s
√
t�, 4},

see [4].

Theorem 1. Let G = (V,E) be an edge colored graph. Assume that e ∈ E is an edge
of G that is colored with color c and that all other edges of G have a color different from
c. Then G is rainbow connected if and only if G/e is rainbow connected.

Proof. Assume that G is rainbow connected. Then clearly G/e is rainbow connected,
too, as all rainbow paths of G that do not use e are also rainbow paths of G/e; rainbow
paths of length l traversing e are transformed into rainbow paths of G/e of length l − 1.
Observe that this statement remains true when e uses a color that is also used by other
edges of G.
Now suppose that G/e is rainbow connected. Let u and v be the end vertices of e in

G and x the vertex of G/e that arises by merging u and v. Consider a rainbow path
P connecting two vertices s, t of G/e that traverses x. If P is also a rainbow path in
G− e then P does not traverse e, hence it is a rainbow path in G, too. In case that P
is not a rainbow path of G/e, the path P splits into two rainbow paths, say the first
one between s and u and the other one between v and t. The color sets of these two
rainbow paths are disjoint. Consequently, we obtain by inserting e a rainbow path of G,
which gives the statement.

Let s be a vertex of the graph G = (V,E) and φ : E → {1, . . . , k} an edge coloring
of G. The graph G is called source rainbow connected with respect to s if there exist
rainbow paths from s to any other vertex of G. An edge colored graph G = (V,E)
is called source rainbow connected with respect to S, S ⊆ V , if G is source rainbow
connected with respect to any vertex of S. We define rcS(G) as the smallest positive
integer k such that there is an edge k-coloring of G that makes G source rainbow
connected with respect to S. Let k be a positive integer. The k-source rainbow number
of G is defined by

sck(G) = max{rcS(G) | S ⊆ V, |S| = k}.
Clearly, we have the relation sck(G) ≤ rc(G) for any graph G with equality for k = n.
As rc{v}(G) = ecc(v) for any vertex v ∈ V , we find sc1(G) = diam(G). A star Sn (a
tree with one vertex of degree n and n leaves) shows that the difference of sc1(G) and
scn(G) can be arbitrarily large, as we have sc1(G) = 2 and scn(G) = n for all n ≥ 2.
More generally, any tree T with m edges has rc(T ) = m.
Let s and t be two given vertices of graph G = (V,E) and φ : E → {1, . . . , k} an

edge coloring of G. It is shown in [2] that the problem of deciding whether there exists
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a rainbow path between s, t ∈ V is NP-complete. A general introduction to rainbow
connection of graphs is given in [3, 10].
A proper edge coloring of a graph G = (V,E) is an edge coloring of G such that

any two edges with a common end vertex are colored differently. Let G be a properly
colored graph of diameter 2. Then there exists a path of length two between any two
non-adjacent vertices of G such that its edges are colored differently. Consequently, G
is rainbow connected. However, the converse is not true – there are improper rainbow
colorings, even in graphs of diameter 2.
Let G = (V,E) be a rainbow connected graph of order n with an edge coloring

φ : E → {1, . . . , k}. What is the minimum size (number of edges) that G can have?
This problem has been investigated in [1, 12, 16]. Some important results are the
following statements. The minimum size of a rainbow connected graph of order n that
is edge colored with at most k colors is denoted by t(n, k).

Theorem 2 ([16]). Let G be a connected graph of order n. Then

t(n, 1) =

(
n

2

)
,

t(n, k) = n for
n

2
≤ k ≤ n− 2,

t(n, n− 1) = n− 1.

For k = 2 the following inequality is satisfied:

t(n, 2) ≤ �log2 n�(n+ 1)− 2�log2 n�+1 + 2.

Theorem 3 ([12]). If k, n ≥ 3, then t(n, k) = �k(n−2)
k−1

�.

In order to describe the connection between network broadcast problems, we introduce
a generalization of rainbow colorings of graphs. Let G = (V,E) be a graph and k a
positive integer. An edge list coloring of G is a map Φ : E → 2{1,...,k} that assigns a set
of colors from {1, . . . , k} to each edge of G. A list edge colored graph G is said to be
list rainbow connected if there is a rainbow path between any two vertices of G such
that the color of each edge e of the path is selected from Φ(e).

3.1 Rainbow Independent Sets

What is the maximum number of edges that can be colored alike in a rainbow coloring
of a graph? This question leads to the following notion. Let F ⊆ E be a set of edges of
a graph G = (V,E). The set F is called rainbow independent or short r-independent if
there exists a rainbow coloring of G that colors all edges of F with the same color. An
edge set F ⊆ E that is not r-independent is called r-dependent. Obviously there are
no r-dependent singletons. A maximum r-independent set might contain only a single
edge (in trees) or even all edges of the graph (for complete graphs). Here maximum is
meant with respect to cardinality. A maximal r-independent set F is a r-independent
set that is not a proper subset of an r-independent set. A maximal r-independent set is
not necessarily a maximum r-independent set.

Theorem 4. Let G = (V,E) be a connected graph and A = {e, f} ⊆ E. Then A is
r-independent if and only if at least one of the edges e, f is not a bridge of G.
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Figure 7: To the proof of Theorem 5

Proof. Assume that the edges of G are colored all differently with the exception of e
and f , which are colored alike. Let e = {u, v} be an edge that is not a bridge, which
is colored with color c. Then there is a rainbow path between u and v that does not
use color c. Consequently, each path in G that uses both edges e and f can be replaced
by a path that does not use e. The graph G is rainbow connected as this path has no
edges of the same color.
Now assume that e = {u, v} and f = {x, y} are bridges of G such that u and y are in

different components of G− v and of G− x. We allow also the case v = x. Then there
is a unique path from u to y in G that contains the two edges e and f . This is not a
rainbow path as these edges are colored alike.

Theorem 5. Let G = (V,E) be a connected graph and A,B ⊆ E with A ∩B = ∅. If A
and B are cuts of G then A ∪B is an r-dependent set of G.

Proof. Let X, Y ⊆ V be the vertex subsets that generate the cuts A,B:

A = {{x, y} ∈ E | x ∈ X, y ∈ V \X}
B = {{x, y} ∈ E | x ∈ Y, y ∈ V \ Y }

see Figure 7. Now assume that all edges of A ∪ B are colored alike. Then there can be
no rainbow path between a vertex u ∈ X and a vertex v ∈ Y .

The following properties of r-independent and r-dependent sets of connected graphs
are easily verified:

• Let G = (V,E) be a graph and (X,F ) a clique in G. Then F is an r-independent
set of G.

• Let (V, F ) be a spanning tree of a graph G = (V,E) and f ∈ F . Then (E\F )∪{f}
is an r-independent set of G.

• Any nonempty set of bridges of a graph is r-dependent.

• If A is an r-independent set of a graph G and B ⊆ A, then B is r-independent,
too.

• Any superset of an r-dependent set is r-dependent.

• Let G be a graph with m edges. If the largest r-independent set of G has k edges,
then rc(G) ≤ m− k + 1.
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In contrast to independent vertex or edge sets in graphs, r-independent sets of graphs
cannot be independently chosen. Consider, as an example, the cycle C6 with edge set
E. Any edge subset A of E with |A| = 3 forms an r-independent set and so does its
complement B = E \A. However, the cycle C6 with all vertices of A colored red and all
vertices of B colored blue is not rainbow connected.

Theorem 6. Let F be an edge subset of a cycle Cn of length n ≥ 3. The set F is
r-independent if and only if |F | ≤ 3.

Proof. Assume |F | = k and let φ : E(Cn) → {1, . . . , n− k + 1} be an edge coloring of
Cn such that φ(e) = φ(f) if and only if e, f ∈ F . Consequently, a color of an edge of
E \ F appears exactly once in Cn. According to Theorem 1, Cn is rainbow connected if
and only if a monochromatic cycle Ck is rainbow connected. This is true for k = 3 and
false for any k > 3.

Figure 8: A monochromatically colored P5 and its edge extension

Let F be a nonempty edge subset of the complete graph Kn. Consequently, F is an
r-independent set. What is the maximum number of edges that we can remove such
that F is still r-independent in the remaining graph? We can reverse this question. Let
G = (V, F ) be a non-complete graph that is monochromatically edge colored. What
is the minimum number of edges that have to be inserted in G in order to render
F r-independent, i.e. to make G rainbow connected? Consider, as an example, the
monochromatic path presented in Figure 8. The four edges of the path are colored with
color 1. The two inserted edges colored with colors 2 and 3 yield a rainbow connected
graph. The combination of the Theorems 4, 5 and 6 shows that the insertion of only
one edge is insufficient in order to make the edge set of the path r-independent.

3.2 Rainbow Partitions

Let Π(E) be the set of all partitions of the edge set of a graph G = (V,E). A partition
π is called a refinement of a partition σ if each block of π is a subset of a block of σ. We
order the partitions of Π(E) such that π ≤ σ is satisfied if and only if π is a refinement
of σ. Π(E) together with this ordering relation defines a lattice – the partition lattice of
E. The minimal element 0̂ of Π(E) is the partition that consists entirely of singletons.
The maximal element 1̂ has exactly one block, namely E itself.

A partition π ∈ Π(E) is called a rainbow partition if we obtain a rainbow coloring of G
by coloring exactly those edges alike that belong to one block of π but edges of different
blocks with different colors. We denote the set of all rainbow partitions of G by Πr(G).
As a consequence of the definition of rainbow partitions, we conclude that π ∈ Πr(G)
and σ ≤ π imply σ ∈ Πr(G). The minimal element 0̂ is a rainbow partition for any
connected graph. All partitions of Π(E) are also rainbow partitions in the complete
graph. Figure 9 shows the ordered set of all rainbow partitions of a cycle. This ordered
set is (for any given graph) a lower semilattice, i.e. for any two rainbow partitions π, σ
the join, defined by

π ∧ σ = max{τ ∈ Πr(G) | τ ≤ π, τ ≤ σ},
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Figure 9: A cycle C4 together with its semilattice of rainbow partitions

Figure 10: A cycle C5 has no rainbow coloring of type {{1, 1, 1}, {2, 2}}

is also a rainbow partition.
For any maximum r-independent set F of G there is a maximal element in Πr(G)

that contains F as a block; the converse is not true in general, see the example given in
Figure 9. The rainbow connection number of a graph satisfies

rc(G) = min{|π| | π ∈ Πr(G)}.

Let π be a rainbow partition of the graph G = (V,E) and e /∈ E. Then any partition σ
that is obtained from π by inserting e into one block of π or by appending the block
{e} to π is a rainbow partition of the graph G+ e.

Theorem 7. Let n ≥ 3 and π ∈ Πr(Cn) a rainbow partition of the cycle Cn. Then
exactly one of the following alternatives applies to π:

• One block of π has three elements and all other blocks are singletons.

• There exist exactly k, 0 ≤ k ≤ n/2, two-element blocks in π; all other blocks are
singletons.

Proof. According to Theorem 6, there can be no block with four or more elements in
π. Figure 10 shows (up to symmetry) all possible edge colorings of a cycle C5 with
two colors such that one color is three times used and the other one twice. It is easy
to check that none of these colorings is a rainbow coloring. Applying Theorem 1, we
can conclude that no cycle Cn, n ≥ 5 can have a rainbow partition with one block of
cardinality 3 and one block of cardinality 2.
The only way to generate a rainbow coloring of a cycle C4 with two colors such that

each color is used twice is to color non-adjacent edges of the C4 alike. Now let E =
{e0, . . . , e2n−1} be the edge set of a cycle C2n indexed according to the order of traversal
along the cycle. We can easily verify that the color assignment c(ei) = c(ei+n) = i+1 for
i ∈ {0, . . . , n− 1} results in a rainbow coloring of the C2n. However, the color classes are
unique – any different distribution of colors yields an edge coloring that is not rainbow.
In order to see this, assume there are four indices i < j < k < l (taken mod 2n) such
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that c(ei) = c(el) and c(ej) = c(ek). Then by contracting all other edges we obtain a
non-rainbow colored C4, which shows again by Theorem 1 that the C2n is not rainbow
colored.

3.3 The Rainbow Polynomial

Let x be a nonnegative integer. The rainbow polynomial ρ(G, x) of a graph G is the
number of rainbow colorings of G with at most x colors. This definition immediately
implies:

• If G = ({v}, ∅) is a graph with exactly one vertex, then ρ(G, x) = 1.

• If G is disconnected, then ρ(G, x) = 0.

• If G is a tree with n vertices, then ρ(G, x) = xn−1.

• The rainbow polynomial of the complete graph is

ρ(Kn, x) = x(
n
2).

The rainbow connection number of a graph G is the smallest nonnegative integer that is
not a root of ρ(G, x):

rc(G) = min{x ∈ N | ρ(G, x) > 0}
A rainbow coloring of a graph is invariant with respect to insertion of edges, which
yields the next statement. Let G = (V,E) be a graph with m edges and F ⊆ E. Then
the relation

x|F |ρ(G− F, x) ≤ ρ(G, x) ≤ xm

is valid for any nonnegative integer x ∈ N.

Theorem 8. Let G = (V,E), G1 = (V 1, E1) and G2 = (V 2, E2) be connected graphs
such that V 1 ∪V 2 = V , E1 ∪E2 = E, V 1 ∩V 2 = S and E1 ∩E2 = ∅ are satisfied. Then
for any x ∈ N,

ρ(G, x) ≥ max{ρ(G1, x)ρ(G2, x− |E1|), ρ(G2, x)ρ(G1, x− |E2|)}.
Proof. The set S is a vertex separator of G. Since the two subgraphs G1 and G2 are edge
disjoint, we can color them independently. There are ρ(G1, x) different rainbow colorings
of G1 with x colors. A rainbow coloring of G1 can safely extended to a rainbow coloring
of G if we avoid using colors that have been used in G1. There remain x− |E1| colors
for the edges of G2 as there are at most |E1| different colors already in use. Exchanging
the roles of G1 and G2 yields the second term of the maximum.

Theorem 9. Let G = (V,E) be a connected graph and A ⊆ E the set of bridges of G.
Let G/A be the graph obtained from G by contraction of all its bridges. Then

ρ(G, x) ≥ x|A|ρ(G/A, x− |A|).
Proof. Any two bridges must have different colors in a rainbow coloring of G. Thus
there are x|A| possibilities to color the |A| bridges with x colors. If the set of colors used
in G − A is disjoint from the set of colors that are used for bridges in A and G/A is
rainbow connected then clearly G itself is rainbow connected, too. However, there might
be edge colorings making G rainbow connected even if colors of A are reused in the
remaining graph.
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Theorem 10. Let e be an edge of a connected graph G. Then for any x ∈ N,

ρ(G, x) ≥ xρ(G/e, x− 1).

Proof. Let e = {u, v} be the edge to be contracted. Any path of G that does not traverse
the edge e is still a path in G/e. A path P traversing e is transformed into a shorter
path P ′ of G/e. Now assume that there are x colors available to color the edges of G.
First, we color e with one of the x colors, say with color c. Then we contract e and
construct a rainbow coloring of G/e avoiding the color c. There are exactly ρ(G/e, x−1)
different rainbow colorings of G/e that do not use the color c. If the path P ′ in G/e is
rainbow colored, then P is rainbow colored in G assuming e is c-colored. Hence there
are at least xρ(G/e, x− 1) rainbow colorings for G.

Let ri(G) be the number of rainbow partitions of G with exactly i blocks. The rainbow
generating function r(G, x) is the ordinary generating function for the number of rainbow
partitions of G:

r(G, x) =
∑

π∈Πr(G)

x|π| =
m∑
i=0

ri(G)xi.

In the following the (unsigned) Stirling numbers of the first kind are denoted by
[
n
k

]
.

They give the number of permutations of an n-set with exactly k cycles. The rainbow
polynomial can be easily derived from the rainbow generating function:

ρ(G, x) =
m∑
i=0

ri(G)xi (1)

=
m∑
k=0

k∑
j=0

[
k

j

]
(−1)k−jrk(G)xj. (2)

The complete graph Kn with m =
(
n
2

)
edges satisfies

r(Kn, x) =
m∑
k=1

{
m

k

}
xk

as any partition of the edge set is a rainbow partition. Here
{
m
k

}
are the Stirling numbers

of the second kind, which give the number of partitions of an m-set with exactly k blocks.
The following result is an immediate consequence of Theorem 7.

Theorem 11. The rainbow generating function of the cycle Cn, n ≥ 3, is

r(Cn, x) =

�n
2
�∑

k=0

(
n

2k

)
xn−k +

(
n

3

)
xn−2.

Substituting x by 1 in this polynomial, we find that the cycle Cn has 2n−1 +
(
n
3

)
different rainbow partitions. Theorem 11 together with Equation (2) yield the rainbow
polynomial of the cycle Cn.

Theorem 12. Let G = (V,E) be a connected graph of order n that consists completely
of cycles that have at most one vertex in common. Hence, G is a cactus without any
bridges. Figure 11 shows a graph of this kind. Then for any k ∈ N

ρ(Cn, k) ≤ ρ(G, k).



42 Broadcast in Wireless Ad-hoc Networks

Figure 11: A bridgeless cactus

Proof. The following two easy observations suffice to prove the theorem:

• Each bridgeless cactus with n edges can be obtained from a cycle Cn by a sequence
of merges of non-adjacent vertices.

• Let H be a graph with two non-adjacent vertices u and v and Huv the graph
obtained from H by merging u and v. Then each rainbow path of H corresponds
to a (possibly shorter) rainbow path in Huv.

3.4 Random Edge Colorings

Now we consider again the model of random broadcasting. At time t = 0 a single
vertex s of a given graph G = (V,E) is informed. In each successive time step each
informed vertex informs (simultaneously) its neighbors with probability p along the
incident edges. This broadcasting process can be simulated as follows. First we fix a
limit time t = k, k > 0. Then we select randomly k edge subsets F1, . . . , Fk according
to the probability distribution

Pr(Fi = F ) = p|F |(1− p)|E|−|F |. (3)

In case of non-identical broadcast probabilities, the distribution changes to

Pr(Fi = F ) =
∏
e∈F

pe
∏

f∈E\F
(1− pf ).

Next we define a list edge coloring Φ :→ 2{1,...,k} by

Φ(e) = {i ∈ {1, . . . , k} | e ∈ Fi}.

The interpretation of this list edge coloring is as follows. The colors in a set Φ(e)
represent time steps where the edge e is open, that is e can be traversed by the message
in order to inform a neighboring vertex. It does not matter whether an end vertex of e
is already informed. The membership e ∈ Fi just indicates that an information could be
transferred along e at time i. Now the decision whether the broadcast time is at most k
is easy. We just verify that there is for each vertex x ∈ V a path

Px = (s, e1, v1, . . . , ej−1, vj−1, ej, vj = x)
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Figure 12: A graph of order 9 with 11 edges

and a sequence (c1, . . . , cj) of colors with c1 ∈ Φ(e1), . . . , cj ∈ Φ(ej) and

c1 < c2 < · · · < cj.

It is already sufficient to require that the colors c1, . . . , cj are different. If there exists a
sequence of different colors, then there also exists a monotone increasing sequence of
colors with the same probability.
First we consider a random edge coloring where a color for each edge is randomly

selected from the color set C = {1, . . . , k}. An edge coloring of this kind might also
be considered as a list coloring such that all lists are singletons. Let G = (V,E) be a
graph with m edges. Then there are km different edge colorings with colors from C for
G. Let Prc(G, k) be the probability that a random edge coloring out of a set of k colors
generates a rainbow connected graph. Using the rainbow polynomial, we obtain

Prc(G, k) =
ρ(G, k)

km
.

This equation yields Prc(Kn, k) = 1 for the complete graph and Prc(Pn, k) =
kn−1

kn−1 for
a path with n vertices. The probability of choosing identical colors decreases with
increasing number of colors, which results in

lim
k→∞

Prc(G, k) = 1

for any finite connected graph G.
The graph presented in Figure 12 has the rainbow polynomial

ρ(G, x) = x11 − 3 x10 − 23 x9 − 219 x8 − 30 x7 + 39059 x6 − 306558 x5

+1045039 x4 − 1831946 x3 + 1604184 x2 − 549504 x.

We find ρ(G, x) = 0 for x ∈ {0, 1, 2, 3, 4} and ρ(G, 5) = 535080 such that rc(G) = 5
follows. Figure 13 shows the probability that the randomly edge colored graph of
Figure 12 is rainbow connected as a function of the number of colors.
The following statement is closely related to generalized coupon collector problems,

see [18] and [22].

Theorem 13. Let G = (V,E) be a graph with edge set E = {1, . . . ,m} and j, k positive
integers with j ≤ k. We draw independently m random j-subsets L1, . . . , Lm out of
{1, . . . , k}, which define an edge list coloring of G. Then the probability that each color
of {1, . . . , k} appears at least once among the edges of G is

Pr

({∣∣∣∣∣
⋃
e∈E

Le

∣∣∣∣∣ = k

})
=

1(
k
j

)m k−j∑
i=0

(−1)i
(
k

i

)(
k − i

j

)m

.
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Figure 13: A graph of order 9 with 11 edges

Proof. The number of all possible assignments of m color sets of size j to the edges of G
is
(
k
j

)m
, which gives the denominator on the right-hand side. We define random events

AX for all X ⊆ {1, . . . , k} by

AX =

{
X �

⋃
e∈E

Le

}
.

Notice that AX ∩AY = AX∪Y for all X, Y ⊆ {1, . . . , k}. Then the probability requested
in the theorem is

Pr

({∣∣∣∣∣
⋃
e∈E

Le

∣∣∣∣∣ = k

})
= 1− Pr

({
k⋃

i=1

A{i}

})

=
∑

X⊆{1,...,k}
(−1)|X| Pr(AX)

=
∑

X⊆{1,...,k}
(−1)|X|

[(
k−|X|

j

)
(
k
j

)
]m

=
1(
k
j

)m k∑
i=0

(−1)i
(
k

i

)(
k − i

j

)m

,

which coincides with the statement of the theorem as the last binomial coefficient
vanishes for i > k − j.

The next statement is a direct consequence of this proof.

Corollary 14. Let j, k,m be positive integers with j ≤ m ≤ k. There are

k−j∑
i=0

(−1)i
(
k

i

)(
k − i

j

)m
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different sequences (L1, . . . , Lm) of m (not necessarily different) j-element subsets of
{1, . . . , k} such that

m⋃
i=1

Li = {1, . . . , k}.

Assume that we assign an edge list coloring to a path Pm+1 such that each edge
receives a color list that is a random selection of t elements out of a color set of cardinality
k. What is the probability that the path has a rainbow coloring that is compatible with
the given lists? In order to derive an answer to this question, we need some preliminary
results. Let L = {L1, . . . , Lm} be a family of m sets. We consider here L as a multiset of
sets as we allow Li = Lj , for i �= j. A transversal or a system of distinct representatives
of L is a set A = {l1, . . . , lm} of m distinct elements such that li ∈ Li, for i = 1, . . . ,m.
The following statement is also known as Hall’s marriage theorem.

Theorem 15 ([5]). A set family L = {L1, . . . , Lm} has a transversal if and only if the
relation ∣∣∣∣∣

⋃
i∈X

Li

∣∣∣∣∣ ≥ |X|

is satisfied for all subsets X ⊆ {1, . . . ,m}.

Figure 14: A bipartite graph

A set family L = {L1, . . . , Lm} where all sets have cardinality t and all sets are subsets
of {1, . . . , k} can be represented as a bipartite graph G = (L ∪ {1, . . . , k}, E) where Li

is adjacent to j if and only if j ∈ Li. Figure 14 shows a bipartite graph representing the
set family

L = {{1, 2, 3}, {1, 3, 4}, {2, 3, 5}, {2, 3, 4}}.
A transversal of the set family corresponds to a matching in G that saturates all vertices
of L.

4 Conclusions and Open Problems

Let k,m, t be positive integers with t ≤ m ≤ k. We draw independently m random
t-subsets L1, . . . , Lm out of C = {1, . . . , k}. Let pk,m,t be the probability that there
exists a transversal of the set family L = {L1, . . . , Lm}. Let xk,m,t be the number of
set families {L1, . . . , Lm} with |Li| = t, for i = 1, . . . ,m, that do not have a transversal.
Consequently, the probability we are looking for can be expressed by

pk,m,t = 1− xk,m,t(
k
t

)m . (4)

The challenge to compute the numbers xk,m,t remains an open problem for all but a few
special combinations of the parameters k,m, t. For t = 1 the answer is given by the
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rainbow polynomial. However, already the case t = 2 requires much more effort, see the
next chapter.
Interesting open problems remain to solve:

• We can easily find the number of different list edge colorings (S-lists) that are
compatible with a given rainbow coloring (transversal). However, when we have a
set of edge colorings instead, then a complicated version of inclusion–exclusion
pattern emerges. Is there a way to describe these pattern in a closed form?

• The smallest set families that can violate the condition of Theorem 15 are families
of cardinality t + 1. In general, we can select a subset D of t + l colors (l > 0)
from C = {1, . . . , k} and apply Corollary 14 in order to determine the number of
set systems with t+ l sets of cardinality t that have not all colors from D. Here
again we need inclusion–exclusion to find the number of set systems without a
transversal.

• Can we find the probability that a random set system with a distribution according
to Equation (3) has a transversal?
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Transversals of Random Set
Systems
Xiangying Chen and Peter Tittmann

In the preceding chapter we started the investigation of random set systems that are
related to broadcasting problems in networks. Now we focus on set systems (list colorings)
where all sets have cardinality 2. The main techniques employed for the analysis are
the exponential formula from enumerative combinatorics and the Tutte polynomial of a
graph.

1 Introduction

Let k be an integer greater than 1 and S = {1, . . . , k}. We draw at random two elements
from S. This experiment is independently m times repeated, which results in a list
L = [L1, . . . , Lm] of random two-element sets. We call such a random list of unordered
pairs from S an S-list. A transversal of L is a set T = {t1, . . . , tm} of m different
elements such that ti ∈ Li for i = 1, . . . ,m. What is the probability that a given S-list
L has a transversal? This probability is denoted by p(k,m). In this paper, we present
different methods for the computation of p(k,m), consider some generalized problems,
and show its relation to graph polynomials.
Obviously, there are

(
k
2

)
possibilities to chose an unordered pair of elements from S.

Hence there exist
(
k
2

)m
different S-lists of length m. Let fkm be the number of S-lists

of length m with |S| = k that possesses a transversal. Then the desired probability is
given by

p(k,m) =
fkm(
k
2

)m .

Consequently, we might consider the stated problem as an enumeration problem of the
following kind. How many lists of m pairs from S have a transversal? There is clearly
no transversal for L if |L| = m > k = |S|. Therefore we assume in the following that
m ≤ k. We consider first the case m = k. The S-list can be represented by a bipartite
graph G = (L ∪ S,E), where the edge set is defined by

E = {{L, s} | s ∈ L ∈ L}.

Then any transversal of L corresponds to a perfect matching of G. This implies that fkk
is the number of perfect matchings of G. We define the biadjacency matrix AG = (aij)
by

aij =

{
1 if sj ∈ Li

0 otherwise
.

As a perfect matching of G is uniquely determined by a selection of ones from the
biadjacency matrix that contains from each raw and each column exactly one element,
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the number of perfect matchings equals the permanent of AG:

perAG =
∑
π∈Sk

k∏
i=1

ai,πi

Further interesting presentations and relations to other areas of mathematics can be
found in [3, 9, 11]. The asymptotic enumeration of transversals has been considered in
[10].

2 Pseudoforests

Let L = {L1, . . . , Lm} be a multiset of sets. We need in the following Hall’s marriage
theorem [7], which states that the family L has a transversal if and only if the relation∣∣∣∣∣

⋃
i∈X

Li

∣∣∣∣∣ ≥ |X|

is satisfied for all subsets X ⊆ {1, . . . ,m}. We will use this theorem in order to develop
a characterization of S-lists having transversals.

In the following we consider graphs that might have parallel edges but no loops. A
subgraph of a given graph that consists of two vertices connected by two parallel edges is
considered as a cycle C2 of length 2. A pseudoforest is a graph in which each component
has at most one cycle.

Theorem 1. Let G = (S,L) be a graph that is defined by a given S-list L. Then G is a
pseudoforest.

Proof. Assume L has a transversal but G has a component H = (W,F ) the has two or
more cycles. Then clearly the relation |W | < |F | is satisfied and hence Hall’s condition
is violated for the family of pairs that are represented by the edges of H, which yields a
contradiction to the assumed existence of a transversal.

Now assume that G = (S,L) is a pseudoforest. Then we can construct a transversal
of L as follows. First we observe that a transversal of L can be obtained as the union
of transversals for the components of G. Assume that H is a component of G that is
a cycle. Then the vertex set of the cycle provides the desired transversal. If H is not
a cycle and has at least one edge then H has a pendant vertex v (a vertex of degree
1). We define T = ∅ as initialization for the transversal of H. Now we choose v as an
element of the transversal T and remove v and its incident edge from H. The resulting
graph H − v is either a single vertex or a cycle or it has again a pendant vertex. In the
first case the vertices selected so far form a transversal. In the second case the union of
the set T of already selected vertices together with the vertex set of the cycle forms a
transversal for H. In the third case we can recursively proceed with the construction of
the transversal by adding the next pendant vertex to T .

Theorem 1 shows that fkm equals the number of pseudoforests with k vertices and m
edges. First we count connected pseudoforests, i.e. pseudotrees. A pseudotree is either a
tree or a connected graph with exactly one cycle. The number of trees of order n is,
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according to a famous theorem of Cayley [4], given by nn−2. As a tree of order n has
exactly n− 1 edges, the number of connected unicyclic graphs with a cycle of length 2 is

(n− 1)nn−2, n ≥ 2. (1)

The calculation of the number of connected unicyclic graphs with a cycle of length n,
n ≥ 3, requires some more effort. First, we select a subset of k vertices that induce the
cycle. Then we take into account that there exist (k − 1)!/2 different cycles on a given
set of k vertices. Combining this results, we learn that there are

cn,k =

(
n

k

)
(k − 1)!

2
=

nk

2k

different cycles of length k, k ≥ 3, on n vertices.
Assume that H is a connected unicyclic graph of order n with a cycle Ck. Then the

graph H/Ck obtained from H by contracting the cycle Ck is a tree T . If we replace
Ck by another cycle Ĉk with the same vertex set, then H/Ĉk is still the same tree T .
The set of different trees that we can obtain by contraction of Ck is exactly the set of
spanning trees of the graph Kn/Ck. We denote the number of spanning trees of a graph
G by t(G). The number of connected unicyclic graphs of order n with a cycle of length
k (k ≥ 3) is, consequently,

nk

2k
t(Kn/Ck). (2)

The graph Kn/Ck = (X,E) has n− k+1 vertices. The vertex set X splits into a subset
Y of cardinality n− k and {z}, where z is the vertex obtained by the contraction of the
cycle and Y is a subset of the original vertex set of the complete graph Kn. Each vertex
of Y is connected with z by k parallel edges. The matrix Lz obtained from the Laplace
matrix of of Kn/Ck by deleting its column and raw that correspond to the vertex z has
the shape

Lz =

⎡
⎢⎢⎢⎢⎢⎣

n− 1 −1 −1 . . . −1
−1 n− 1 −1 . . . −1
−1 −1 n− 1 . . . −1
...

...
...

. . .
...

−1 −1 −1 . . . n− 1

⎤
⎥⎥⎥⎥⎥⎦
n−k,n−k

According to the theorem of Kirchhoff, see [8], the number of spanning trees of Kn/Ck is

t(Kn/Ck) = detLz.

Multiplying the last raw of Lz with −1 and adding the result to all other raws yields

detLz =

∣∣∣∣∣∣∣∣∣∣∣

n 0 0 . . . −n
0 n 0 . . . −n
0 0 n . . . −n
...

...
...

. . .
...

−1 −1 −1 . . . n− 1

∣∣∣∣∣∣∣∣∣∣∣
n−k,n−k

Adding all columns to the last column gives

detLz = k nn−k−1. (3)
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For k = 1, we rediscover Cayley’s formula for the number of spanning trees of a complete
graph of order n.
The combination of Equations (1), (2), and (3) yields the number of connected

unicyclic graphs of order n:

cn = (n− 1)nn−2 +
n∑

k=3

nk

2k
k nn−k−1 = (n− 1)nn−2 +

nn−1

2

n∑
k=3

nk

nk
. (4)

Trees and connected unicyclic graphs are the building bricks of pseudoforests. Hence,
we can use the exponential formula, see [15], in order to count pseudoforests. First, we
define the exponential generating functions

T (x) =
∑
n≥1

nn−2x
n

n!
(5)

C(x) =
∑
n≥1

(
(n− 1)nn−2 +

nn−1

2

n∑
k=3

nk

nk

)
xn

n!
(6)

Using the exponential formula, we obtain

P (x) = eT (x)+C(x) (7)

as the exponential generating function for the number of pseudoforests.
The introduction of a second variable in the pseudoforest counting function (7) allows

to keep track of the number of edges forming the forest:

P (x, y) = ey T (x)+C(x) (8)

Consider a pseudoforest H of order n. Each unicyclic component of H has the same
number of vertices and edges; each tree component of H has one edge less than its order.
Consequently, the variable y in P (x, y) counts the edge deficiency of a pseudoforest with
respect to its order. Thus we get the following result.

Theorem 2. Let m,n be nonnegative integers. The number of pseudoforests of order n
with exactly m edges is n! times the coefficient of xnyn−m in the power series expansion
of P (x, y).

Now assume that the S-list L is a set, which implies that no pair of elements from S
appears twice in L. In this case, the resulting graph G = (S,L) is simple. Consequently,
a pseudoforest cannot contain any two-cycles. We modify the exponential generating
function (6) in order to exclude two-cycles:

C̃(x) =
∑
n≥1

nn−1

2

n∑
k=3

nk

nk

xn

n!
(9)

If f(x, y) is a function of x and y, then we denote by [xkyl]f(x, y) the coefficient of xkyl

in the formal power series expansion of f(x, y), presupposing that the series expansion
does exist. Using again the exponential formula, we obtain the following statement.

Theorem 3. Let m,n be nonnegative integers. The number of pseudoforests of order n
with exactly m edges and without any two-cycles is

n! [xnyn−m]eyT (x)+C̃(x).
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We define the exponential generating function for the number of connected unicyclic
graphs with a two-cycle by

C2(x) =
∑
n≥2

(n− 1)nn−2x
n

n!
. (10)

Theorem 4. Let m be a positive integer and S = {1, . . . ,m}. The probability that a
random S-list L = {L1, . . . , Lm} has a transversal is

(m!)2(
m
2

)m [xm]eC̃(x)+ 1
2
C2(x).

Proof. The number of all possible S-lists of length m is(
m

2

)m

. (11)

The graph G = ({1, . . . ,m},L) is according to Theorem 1 a pseudoforest. However,
as the number of vertices and edges of G are equal, all components of G have to be
unicyclic. The exponential generating function for the number of pseudoforests without
tree components is

eC(x) = eC2(x)+C̃(x).

As we count in Equation (11) ordered lists, we have to distinguish a graph with the
edges ek = {a, b} and el = {c, d} from a graph with the edges el = {a, b} and ek = {c, d}.
Consequently, the order of the edge set matters, which can be easily taken into account
by multiplying the number of pseudoforests with m!. However, each two-cycle is than
counted twice as the permutation of its edges does not change anything. This can be
corrected by using the exponential generating function

eC̃(x)+ 1
2
C2(x)

instead. Now the theorem results from the classical definition of probability.

3 The Tutte Polynomial

The Tutte polynomial has been introduced in [12]. Since its introduction it has found
numerous applications in different fields of mathematics and theoretical physics. It might
be considered as the most important polynomial invariant of graphs (and matroids).
The interested reader can find a variety of results about Tutte polynomials in [5, 13, 14].

The rank of a graph G = (V,E) with k(G) components is defined by r(G) = |V |−k(G).
The nullity of G is n(G) = |E| − |V | + k(G). Rank and nullity of a graph are the
dimensions of its cut and cycle space, respectively, see [1]. The Tutte polynomial is the
ordinary generating function of rank and nullity of a graph, however, with respect to
the shifted variables x− 1 and y − 1:

Definition 5. Let G = (V,E) be a graph (parallel edges and loops are permitted), then
the Tutte polynomial of G, T (G; x, y), is defined as

T (G; x, y) =
∑
F⊆E

(x− 1)k(G[F ])−k(G)(y − 1)|F |−|V |+k(G[F ],

where G[F ] denotes the spanning subgraph of G with edge set F .
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We denote the graph obtained by deleting an edge e, e ∈ E by G − e, and the
graph obtained by contracting an edge e by G/e, then the Tutte polynomial can be
represented recursively. The following theorem is essentially William Tutte’s definition
of this polynomial. For a proof of this statement, see [2].

Theorem 6. If G = (V,E) is a graph and e ∈ E is an arbitrary edge of G,then

T (G; x, y) =

⎧⎪⎨
⎪⎩
xT (G−e; x, y) if e is a bridge;

yT (G−e; x, y) if e is a loop;

T (G−e; x, y) + T (G/e; x, y) otherwise.

Furthermore, T (En; x, y) = 1 for any empty graph En, n ≥ 1

The edge deletion–contraction formula provides a powerful tool to prove properties of
the Tutte polynomial and to show that it is a generalization of many other well-known
graph polynomials, for instance of the chromatic, flow, and reliability polynomial.
Assume there is a fixed but arbitrarily defined linear ordering ≺ on the edge set

E(G) = {e1, . . . , em}, where ei ≺ ej if i < j. The set of all spanning trees of G is
denoted by T (G). For any spanning tree T ∈ T (G), an edge e ∈ T is called internally
active in T , if e ≺ f for all f ∈ E(G) \ E(T ) such that T − e + f ∈ T (G). An edge
e ∈ E(G) \ E(T ) is externally active with respect to T , if e ≺ f for all f ∈ E(T )
such that T − f + e ∈ T (G). A spanning tree T has internal activity i = int(T ) and
external activity j = ext(T ) if there are precisely i internally active edges and precisely
j externally active edges with respect to T .

Theorem 7 ([13]). Let G be a graph with a linear order on its edge set, then

T (G; x, y) =
∑

T∈T (G)

xint(T )yext(T ) =
∑
i,j

ti,jx
iyj,

where ti,j is the number of spanning trees with internal activity i and external activity j.

A proof for this theorem can be found in [2] or [13]. The most interesting statement
contained in Theorem 7 is that the Tutte polynomial is independent of the order of the
edge set.
We proceed with calculating the number of unicyclic graphs via application of the

spanning trees expansion of the Tutte polynomial.

Theorem 8. The number of unicyclic graphs (without parallel edges) of order n is

d

dy
T (Kn; 1, y)

∣∣∣∣
y=1

.

Proof. A connected unicyclic graph can be obtained from a tree by insertion of an edge
between two nonadjacent vertices. Unicyclic graphs and trees are considered here as
spanning subgraphs of a given complete graph. Consequently, we can uniquely identify
each tree or connected unicyclic graph by its edge set. If we add an edge between any
two nonadjacent vertices of each tree, then each unicyclic graph with a cycle of length
k is repeatedly generated k times. In order to avoid multiple generation of the same
unicyclic graph, the edges of the complete graph Kn are linearly ordered. An extension
of a given spanning tree of Kn is only performed with edges that are externally active
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with respect to the tree. As we want to form unicyclic graphs, we have to select exactly
one of the externally active edges for the extension. So there is a bijection between the
set of connected unicyclic graphs with n vertices and the set of spanning trees of Kn

where exactly one of its externally active edges is labeled.
We conclude from Theorem 7 that the generating function for the number of spanning

trees of Kn with j external edges is given by T (Kn; 1, y). The labeling (or pointing as
it is called in [6]) is realized by the operator y d

dy
applied to T (Kn; 1, y), where we save

here the multiplication with y since this variable is finally substituted by 1. Hence the
number of connected unicyclic graphs with n vertices is

∑
T∈T (Kn)

ext(T ) =
d

dy
T (Kn; 1, y)

∣∣∣∣
y=1

. (12)

The result given in the last theorem can be generalized in order to count S-Lists L
with forbidden two-element sets. Assume that F = {{i1, j1}, . . . , {ir, jr}} is a family of
forbidden pairs, i.e. pairs that must not appear as sets in L. We define an undirected
graph

G =

(
S,

(
S

2

)
\F
)
,

where
(
S
2

)
denotes the set of all two-element subsets of S.

Corollary 9. The number of unicyclic graphs without parallel edges which are spanning
subgraphs of G is

d

dy
T (G; 1, y)

∣∣∣∣
y=1

.

Interestingly, the number of spanning trees can also be given by T (G; 1, 1). Corollary
9 is not the solution for the initially stated problem as we might have identical sets in
our set family, which means that we can have parallel edges in G. However, as we count
unicyclic graphs, at most one edge can have a second parallel edge. Consequently, the
number of families of m two-element subsets from S = {1, . . . ,m} that avoid all pairs
from F is

d

dy
T (G; 1, y)

∣∣∣∣
y=1

+ (m− 1)T (G; 1, 1).
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Two-Edge Connected Reliability
and Reductions
Manja Reinwardt

1

Reliability measures are a well explored topic in the literature. Given a probabilistic
graph with failing edges, we investigate the less-known two-edge connected reliability
which is the probability that a two-edge connected graph is realized. The problem is
NP-hard and we present general algorithms with exponential complexity. The goal is to
reduce the graph so that the computations are faster. The main part of the paper deals
with various reductions that fulfil this goal.

1 Introduction

The analysis of reliability has a long history in engineering and mathematics. Moore
and Shannon wrote the first paper about reliability as it is discussed here in 1956. They
studied the reliability of electrical relays and defined the corresponding function [3].
Further measures that are investigated thoroughly in the literature are the s-t-terminal
reliability Rst(G) and the all-terminal reliability R(G) (see for instance the textbooks
[1] and [8]).

We deal with the notion of a probabilistic graph which is a graph G = (V,E) with a
vertex set V and an edge set E and each edge e ∈ E fails stochastically independently
with known probabilities qe = 1− pe. The two-edge connected reliability was defined
by Lucet et al. in [2] and it is the probability that the graph is two-edge connected,
i.e. that there are at least two edge-disjoint paths between every two vertices of the
graph. The problem of finding the two-edge connected reliability is NP-hard since the
number of Hamilton cycles is included as a coefficient of the polynomial and the decision
problem of finding a Hamilton cycle is NP-complete.

The paper is structured as follows. First, we give some definitions. Then two
algorithms with exponential runtime in the size of the graph are presented. The goal is
to reduce the order and size of the graph to speed up the computation. The next section
deals with the reductions. In the end, the conclusion gives hints for further reading.

2 Definitions

Definition 1 (Probabilistic Graph). Let G = (V,E) be an undirected graph. It is called
a probabilistic graph if each edge e ∈ E fails stochastically independently with probability
1− pe. A state of the graph is characterized by the set of operating edges F ⊆ E.

1The reasearch for this thesis was supported by the grant 100087634 of the European Social Fund.
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Let G = (V,E) be a connected undirected graph. A bridge in G is an edge whose
removal from G renders G disconnected. The graph G is called two-edge connected if any
two vertices of V are connected by at least two edge-disjoint paths of G. Consequently,
G is two-edge connected if and only if G is connected and bridgeless. We denote by
λG the edge connectivity of G and by λG(u, v) the local edge connectivity between two
distinct vertices u and v in G.

Definition 2 (Two-edge connected reliability). The two-edge connected reliability of
a probabilistic graph G = (V,E) is the probability that the graph is two-edge connected.
It can be computed by listing every possible state F for which the subgraph (V, F ) is
two-edge connected (λ(V,F ) ≥ 2) and summing up the corresponding probabilities.

R2-ec(G) =
∑

λ(V,F )≥2

∏
e∈F

pe
∏

f∈E\F
(1− pf )

Definition 3 (Pathsets and essential edges). A pathset is a subset of edges F ⊆ E for
which the graph (V, F ) is two-edge connected. The pathset F is called minimal if no
proper subset of F is a pathset. An edge e is essential if it is an element of every pathset
of G.

Remark 4. All the edges of a graph G = (V,E), which are an element of an edge cut
set of cardinality two, are essential. In particular every edge incident to a vertex of
degree two is essential.

3 General Algorithms for Two-Edge Connected

Reliability

3.1 Complete Enumeration

We can compute the two-edge connected reliability using the definition by enumerating
all spanning subgraphs and testing each one for two-edge connectivity. Of course, this is
impractical for larger graphs since there are 2|E| many of them.

Algorithm 1 Complete Enumeration

Input: Graph G = (V,E) with probability vector p.
Output: Two-edge connected reliability R2-ec(G).
R2-ec(G) := 0
if λG < 2 then

return 0
end if
for all F ⊆ E with |F | ≥ |V | do

if λ(V,F ) ≥ 2 then
R2-ec(G) := R2-ec(G) +

∏
e∈F pe

∏
f∈E\F (1− pf )

end if
end for
return R2-ec(G)
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3.2 Decomposition

This method first occurred in [4] under the name of factoring theorem and was derived
for redundancy networks. The algorithm has an exponential runtime complexity in
general since two graphs are generated in each recursion step. Thus, there are 2|E| many
graphs that have to be explored in the worst case. The algorithm (see Algorithm 2)
follows from the law of total probability and the fact that all edges fail stochastically
independently.

Theorem 5. Let G = (V,E) be a graph, e ∈ E an edge of the graph and let G|pe=1

be the graph G with pe set to one. The following decomposition equation holds for the
two-edge connected reliability of G.

R2-ec(G) = pe ·R2-ec(G|pe=1) + (1− pe) ·R2-ec(G− e). (1)

Algorithm 2 Decomposition as a recursive algorithm

Input: Graph G = (V,E) with probability vector p.
Output: R2-ec(G)
if λG < 2 then

return 0
end if
if pe = 1 ∀e ∈ E then

return 1
end if
e := arbitrary edge of G with pe �= 1
return pe ·R2-ec(Gpe=1) + (1− pe) ·R2-ec(G− e)

4 Reductions

Reductions for the all-terminal reliability, namely series-parallel reductions, can be
found in [6]. Similar methods can be applied for the two-edge connected reliability.
Additionally, there is the delta-wye reduction for the all-terminal reliability (see for
instance [7]), which is unfortunately not applicable for higher connectivity and thus for
R2-ec(G).

4.1 Degree-Two Reduction

u v w u w

e f g

Figure 1: Degree-two reduction.

Every edge adjacent to a degree-two vertex may not be deleted, it is essential. Let v
be a vertex of degree two in a graph G = (V,E) and let u and w be the neighbouring
vertices of v. Since the information that u and w are connected by a path must be
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conserved, the vertex v and its incident edges e and f can be replaced by a single edge.
Because all edges fail stochastically independently, the two-edge connected reliability
of G arises from the product of the probabilities pe, pf and the two-edge connected
reliability of the reduced graph G′|pg=1. This reduced graph has a new edge g = {u, w}
with probability one.

R2-ec(G) = pe · pf ·R2-ec(G
′|pg=1). (2)

4.2 Reduction at a Separating Vertex Set of Cardinality Two

The following result is based on ideas from the PhD thesis of Tittmann [9] where a
similar reduction is given for the all-terminal reliability.

Theorem 6. Given a graph G = (V,E) with a separating vertex set {u, v} and two
subgraphs H and K such that K ∩H = ({u, v}, ∅) and K ∪H = G, the graph H can be
reduced to a pair of parallel edges e and f with the operating the probabilities pe and pf ,
respectively, in the following way. The reduced graph is G′ (see Figure 2).

R2-ec(G) = Ω ·R2-ec(G
′) (3)

with

Ω = A+B + C, (4)

pe =
2C

2C +B +
√
B2 − 4AC

, (5)

pf =
2C

2C +B −
√
B2 − 4AC

, (6)

where A = Pr(Hu|v) is the probability that there is no u-v path in H, but all vertices of
H are either in a two-edge connected component containing u or in a two-edge connected
component containing v, B = Pr(Hu−v) denotes the probability that the vertices u and
v lie in different two-edge connected components in H, but there is exactly one path
connecting them. The term C = Pr(Huv) denotes the probability that H is two-edge
connected.

K H

G

u

v

K

u

v

e f

G′

Figure 2: Reduction at a separating vertex set of cardinality two with the original graph
G and the reduced graph G′.

Proof. A case distinction is made for the original graph G and the reduced graph G′

(see Figure 3) where the local edge connectivity between the vertices u and v in H
is considered under the condition that the whole graph is two-edge connected. We
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introduce a reduction parameter Ω to get an equation system with a unique solution.
Case 1 (λH(u, v) = 0) means that there is no u-v path in H. In the reduced graph
G′, both edges e and f have failed with probability (1 − pe)(1 − pf). This yields the
equation Pr(Hu|v) = Ω(1 − pe)(1 − pf). Case 2 (λH(u, v) = 1) stands for exactly one
u-v path in H. In the reduced graph exactly one of the edges e and f has failed and
the other is operating, which yields Pr(Hu−v) = Ω(pe(1− pf) + pf(1− pe)). In case 3
(λH(u, v) ≥ 2), the subgraph H is two-edge connected. In the reduced graph G′ both
edges e and f are operating. This leads to Pr(Huv) = Ω · pe · pf . We get the following
equation system. The non-negativity of the term B2 − 4AC cannot be guaranteed, so
that pe, pf might not lie in the intervall [0, 1].

A = Ω(1− pe)(1− pf ) (7)

B = Ω(pe(1− pf ) + pf (1− pe)) (8)

C = Ω · pe · pf (9)

The solution of this equation system yields the theorem.

K
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v
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v
G′

K

G
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v

K
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v

e or f

G′

K

G

u

v

K

u

v

e and f

G′

Figure 3: Reduction at a separating vertex set of cardinality two: case 1 (top), case 2
(middle), case 3 (bottom).
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4.3 Reduction of Multiple Edges

Reduction of Multiple Parallel Edges

A bundle of multiple parallel edges e1, . . . , ek with common end vertices can be reduced
to a parallel pair of edges f and g. The following theorem shows how to compute pf
and pg, which cannot be interpreted as probabilities.

Theorem 7. Let G = (V,E) be a graph with multiple parallel edges e1, . . . , ek whose
end vertices are u and v. The probability that all parallel edges fail is

Ek =
k∏

i=1

(1− pei)

and the probability that all but one parallel edges fail is

Ek−1 =
k∑

i=1

pei

k∏
j=1
j �=i

(1− pej).

Then we can reduce the multiple edges to a pair of edges f and g and compute pf as well
as pg in the following way.

pf/g = 1− Ek −
1

2
Ek−1 ±

√
1

4
E2

k−1 − Ek(1− Ek − Ek−1)

Proof. The probabilities Ek and Ek−1 can be computed as stated in the theorem because
all edges are failing stochastically independently. We use the formula from Theorem 6
where the subgraph H has the vertex set {u, v} and its edge set contains the parallel
edges e1, . . . , ek. The reduction factor is Ω = 1 because all cases are covered and only
two equations are needed. In the general formula, we get:

A = Ek

B = Ek−1

C = 1− Ek − Ek−1

Substituting this in Equation (5) and (6) and simplifying with the property A+B+C = 1
yields the theorem.

Reduction of Parallel Edge Pairs in a Row

We can reduce multiple pairs of parallel edges if their pairwise common vertices have
all degree four, i.e. there are no further incident edges. Let all edges have the same
operating probabilities p. If all edges have different operating probabilities, a formula
can be given, too. However, it is long and complicated and can easily be derived with
the methods presented here.

Theorem 8. Let G = (V,E) be a graph and e1, e2 a pair of parallel edges with the end
vertices u and v in G. Let f1, f2 be a pair of parallel edges with the end vertices v and
w. The common end vertex v has no other incident edges.
Let G′ be the reduced graph where the vertex v is deleted and the edges e1, e2 as well as

f1, f2 are replaced by edges g1, g2 with end vertices u and w. For all e ∈ E(G), pe = p
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u v w u w

e1

e2

f1

f2

g1

g2

Figure 4: Reduction of parallel edges in a row.

is the probability for an operating edge e. In the reduced graph, the parallel edge pair g1
and g2 has the probability of operating p1 and p2, respectively, and these probabilities can
be calculated by the following equation.

p1/2 =
p2

(1− p)2 + 1± (1− p)
√
2(2− p2)

. (10)

Cases G G′

Case 1: u|w
e1, e2, f̄1, f̄2 ḡ1, ḡ2

ē1, ē2, f1, f2

Case 2: u− w

e1, e2, f1, f̄2 or e1, e2, f̄1, f2 g1, ḡ2 or ḡ1, g2

e1, ē2, f1, f2 or ē1, e2, f1, f2

e1, ē2, f1, f̄2 or ē1, e2, f1, f̄2 or
e1, ē2, f̄1, f2 or ē1, e2, f̄1, f2

Case 3: u = w

e1, e2, f1, f2 g1, g2

Table 1: Cases for the reduction of parallel edge pairs in a row where e is an operating
edge and ē a failing edge.
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Proof. A case distinction is made (Table 1) according to the connectivity between u and
w and we consider the subgraph induced by u, v and w in the original graph G as well
as in the reduced graph G′. In the case 1 (u|w), the vertices u and w are disconnected,
they are connected by one path in the case 2 (u− v) and by two edge-disjoint paths in
the case 3 (u = w).
The vertices u and w constitute a separating vertex set of cardinality two. We can

replace the probabilities A = 2p2(1− p)2 (case 1 for G), B = 4p2(1− p) (case 2 for G)
and C = p4 (case 3 for G) of Theorem 6 and get the following equations together with
Ω = A+B + C = 1.

2p2(1− p)2 = (1− p1)(1− p2)

4p2(1− p) = p1(1− p2) + p2(1− p1)

p4 = p1p2

The solution of the equation system yields the theorem.

5 Conclusion

In this paper, results for the two-edge connected reliability of graphs with imperfect
edges have been presented. Their computation is an NP-hard problem. Two algorithms
with exponential runtime have been presented. We have extended some known results of
other reliability measures and investigated other new reductions. We have presented the
degree-two reduction as well as the reduction at a separating vertex set of cardinality
two. For multigraphs, multiple edges can be reduced in different ways. The theorems
of this paper are also included in the doctoral thesis [5] where further results for the
two-edge connected reliability can be found.
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1 Abstract

Vehicular connectivity has greatly evolved in the past years, but vehicles mostly do not
share any information with other parties, except for immediate accident avoidance, which
basically is still future work. Mobile communication is well established and available
in today’s automobiles. However, sharing information based on social aspects between
vehicles is still in its infancy. Electric automobiles, especially lightweight ones, could
benefit from data collected and shared by other vehicles even more than conventional,
fuel-based automobiles. We propose a concept of socializing vehicles which collect and
share information according to the social media blueprint, based on sensor data acquired
on-board. We introduce a conceptual workflow of data collection and distribution and
present a simulation supporting our concept.

2 Introduction

Data sharing and vehicle-to-vehicle communication has become a well-established field
of research in recent years. Nonetheless, the communication between multiple vehicles
is often associated with short range connections and short term data lifespans with no
global exchange. Although mobile connectivity has greatly evolved in the past years,
vehicles mostly do not share any information with other parties, except for immediate
accident avoidance (for more examples see [7]).

Following that scheme, if a dangerous situation occurs automobiles avoid accidents,
inform nearby vehicles and after that, drive on. But, the same source of danger could
be relevant to all vehicles passing it in the near future. Persistent information which
is globally shared and stored and is available to every vehicle on the road can help to
avoid multiple incidents under similar conditions.

Conventional, fuel-based vehicles benefit not only from danger warnings but also from
real-time traffic information and adaptive routing through unpleasant environments
(e.g. bad road condition, see [8]). Information shared by others hold even more value
for vehicles with electric motors, especially lightweight ones. This data, collected and
shared by other electric automobiles, could improve range estimation or even extend the
range due to fuel efficient routing based on altitude profiles, throttle/break-ratios or
even head wind predictions of a route.

1The research is supported by SMWA/BMVI.



68 Sharing Data in Vehicular Ad-hoc Networks

Certain constrains apply in vehicular ad-hoc networks, such as strategy and speed of
peer discovery, initializing and maintaining connections, data package size and truncation
as well as data distribution using intermediates [11]. Modern communication technology
is widespread and highly available, even mobile communication is well established and
available in today’s vehicles. Communication infrastructures cover cities and countryside,
“smart everything” is a common term used to describe concepts of semantic data retrieval
and usage. However, sharing information based on social aspects between vehicles is
still in its infancy.

Social media can be accessed through almost every modern car, but those built-in
services are for human interaction only and are used to share information generated
by humans. We propose a concept of socializing vehicles which collect and share
information according to the social media blueprint, based on sensor data acquired
on-board. Utilizing information socially includes the collection of data, its processing,
the extraction of high-level information and sharing it with others, considering whether
this information is relevant and which target group it addresses [10].

3 Conceptual Workflow

Our proposed workflow consist of four reiterated main components, namely routing,
driving, detection and sharing (Figure 1) preceded by the processing of street map
material. To proof our concept we implemented a simulation based on OpenStreetMap2

data and custom web services. It visualizes vehicular networks, the flow of data packages
and target specific information relevance evaluation and distribution (see chapter 8).

Figure 1: Our proposed workflow consists of four main components. Every step is
divided into subcategories and contains concepts for all major parts of social
vehicle-to-vehicle communication. Generating routes, driving according to
collected high-level information, detecting new environmental or situational
conditions and sharing them with others will benefit road safety and driver
comfort without any human interaction.

2http://www.openstreetmap.de
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4 Routing

Finding the best route towards a given destination highly depends on suitable heuristics.
In our approach weights of potential candidate segments of road data emerge from
shared information. The number of detections and, more importantly, the rating of those
reports influence the segment rating and are thereby increasing or decreasing segment
weights (see chapter 8). The final route not only consists of plain GPS data, but also
contains additional information. This could include time and traffic estimations, as well
as points of interest (POI). Other additional data, like high-level semantic information
on road conditions, energy efficient driving recommendations or obstacle warnings, could
also be incorporated. The distribution of a route depends on vehicle classes and types
and, if also submitted, can be used for traffic predictions.
The routing algorithm for the cars bases on the D* Lite algorithm introduced by

Koenig and Likhachev in 2002 [4, 5]. This algorithm works as the A* algorithm [3] but
it has the advantage that there is not necessarily a complete re-routing. If an obstacle
occurs, the D* Lite uses the information from the first routing to re-calculated only
the steps which are directly affected by the obstacle. Hence, it is faster then the A*
algorithm if re-routing is required (see also chapter 8.2).

5 Driving

When we assume that every drive serves a purpose and has at least one clearly defined
destination, we can determine the remaining route ahead of the current vehicle position.
Although routes with the same destination may vary depending on certain constrains,
every route is traceable and often also predictable, even if no navigation device is used
to assist the driver. We therefore assume a controlled environment in which every
automobile receives information considering the route ahead, which has been collected
(see chapter 6) and shared (see chapter 7) by other vehicles.

In our concept, every automobile holds a list of messages/descriptions of obstacles,
dangers or other route-related semantic information. This list is updated constantly with
every reception of new data packages. Received data is rated by relevance depending on
significance for the vehicle class, safety or driver bias and its correlation with the route
ahead. The rating of importance invokes different actions, which could be the request
of a new route, driver warnings or an active reaction resulting in braking, suspension
regulation, safety system activation or others (Figure 2).

6 Detection

The quality of information shared in our social network heavily depends on the quality
of the collected sensor data. Moreover, simply recording streams of sensor data does not
suffice. It is the smart fusion of data from various on-board sensors that leads to useful
information. Those sensors can be related to safety, the engine or passenger comfort,
but not every data from every sensor is valuable for other vehicles. Sensors that hold a
certain value for other automobiles are cameras and scanners, almost all safety related
sensors, battery sensors of electric vehicles and other sensors used for driver observation.
Upgrading low-level data sets to high-level semantic information requires e.g. content-

based image retrieval on camera images, 3D-Modelling of objects from scanner point
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Figure 2: Depending on the vehicles assigned target group, route related data is received
and has to be rated and inserted into the local feed of reports. This information
is linked to specific route waypoints and an invoked action could be the request
of an alternative route (green).

clouds, drawing conclusions from safety sensors (e.g. the activation of the anti-lock
braking system could indicate icy road), the rating of roads by fuel efficiency or even the
determination of the driver stress level, and by that assuming an unpleasant environment.
After the analysis, the sensor data can be rated depending on its classification. Safety

warnings for example can be categorized describing the source of danger as unpleasant,
dangerous or very dangerous. The fuel efficiency of roads (or entire cities) could be rated
according to the European Union energy label3. Other ratings could be based on shape
and size of obstacles, traffic density, temporary weather or environmental conditions.
The enrichment of extracted information from sensor data is necessary in order to link

the detected features to routes and maps. Therefore the high-level information in our
scenario is complemented with the GPS position, timestamps, images or other semantic
data, like strategies to resolve or avoid dangerous situations. Those workarounds could
evolve from strategies pursued by the vehicle which encountered the dangerous situation
in the first place. The enrichment also includes a target group recommendation and
finally a submission priority.

7 Sharing

There are mainly two strategies for information submission and reception while driving.
The first one is a centralistic approach based on a single, central access point (e.g. a
webserver), or an on-demand or broadcast distribution from a single, central source
(e.g. radio). The more sophisticated strategy however, is using vehicle-to-vehicle
communication technologies. It involves highly distributed communication grids due
to short range connections to nearby vehicles. This strategy is range dependent and
requires fast connection establishment and small data packages. To avoid data overhead
and costly connection handshakes, data packages would best be transferred in repeating
broadcast cycles.
One simple way of broadcasting is the continuous blind distribution with no specific

targets. A better solution is the submission to all discovered peers on a list of nearby
receivers (e.g. vehicles in an ad-hoc network), as long as the connection persists [2].
Every data package takes hops using intermediates (e.g. every passing vehicle) and stays

3http://eur-lex.europa.eu/legal-content/EN/NOT/?uri=CELEX:32010L0030
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alive until the next access point is reached (e.g. road side units). Its priority raises with
the time passing to ensure a submission in a reasonable period of time (Figure 3).
In our scenario, the final receiver is a distributed web service, just like the well-

known online social networks, with multiple computing facilities to handle large data
occurrences. The three main tasks of this service, aside the reception of data packages,
is the processing and analysis of the contained information, the storage of low- and high-
level features extracted from the source data and finally the (re-) validated distribution
to subscribers (e.g. currently driven vehicles).

Figure 3: Vehicles which have detected dangerous situations are broadcasting data
packages containing relevant information about the source of danger to nearby
vehicles, which on their turn repeat the submission of single data packages
until the complete message reaches the next access point, in this figure a road
side unit.

The processing of incoming data packages includes the fusion with existing information
in order to match positions and semantic high-level features, as well as linking multiple
reports to one single source. Furthermore, every submitted report has to be validated
considering the plausibility of the attached position, high-level description and low-level
data. The report is more plausible and more likely to be significant if it is submitted
by multiple vehicles in a short period of time. The extraction of semantic high-level
features from every data package is part of the classification process. Aside the detection
of objects or situations, the classification mainly serves the social aspect of our web
service by determining the target group of the contained information.
Providers of social networks for humans use target groups to decide which information

is presented to whom. Usually, this is done by analyzing the social background of
the subscribers. Relationships between friends or family play a major role for data
distribution. Interests, hobbies or news subscriptions also impact the presented contents.
Vehicles themselves, as machines, do not have a social background. However, linking
certain vehicles to groups of interest, and by that subscribing them to specific, relevant
feeds, can be done by vehicle types, driver biases, routes or general profiles and other
subscribed feeds.
The most discriminative “social group” is formed by vehicles of the same class, like

trucks, motorbikes, mid-size cars, electric automobiles or others. Additional target
groups based on driver biases include, among others, vehicles whose drivers like to go
fast, vehicles with kids on board or those used for transportation or work related tasks.
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The current location, or route ahead, can be used to establish temporary target groups
with a common interest in fast and save trips towards individual destinations.
Big data processing, and ultimately storage of huge junks of data, requires mass

storage devices, a high availability and highly distributed access capabilities. The
so-called cloud storage technologies are evolved and reliable. Suitable infrastructure
is affordable and, in order to avoid technical maintenance, often rented from cloud
storage specialist. Scalability is very important, as the amount of data stored in our
scenario varies from day to day and depends on the specific relevance and timeout
of the stored information. Additional processing capacity is needed, as every entry
has to be revalidated regularly in order to determine whether an information is still
relevant, has exceeded its timeout or has been confirmed/negated by other submissions.
The usefulness of an information can also be determined by the rating received from
subscribed vehicles, as it is done by the liking or disliking functionality of established
social networks.
The way of distribution depends on the intentions and needs of the subscribers. We

distinguish three main strategies, all of them present in today’s social media. Retrieving
information from our proposed social network can be done in form of live feeds, push
messages or on-demand data supply either of single packages or the whole collection.
Filtering information for specific target groups is vital to exclude irrelevant data and
the reduction of submissions. Nonetheless, filtering has to be reliable and accurate in
order to preserve important warnings.

8 Simulation and Analysis

A lot of effort has been put into the development of traffic simulations. Numerous
software tools and frameworks exist that help to emulate realistic traffic situations and,
even more important, the simulation of vehicular networks [9]. Those tools have to
incorporate a lot of variables depending on the depth of detail that should be provided.
Our focus, on the other hand, is on the visualization of the information sharing process
and therefore requires only a minimalistic approach of traffic simulation and realistic
vehicle behavior.
We created a simulation that implements every aspect from our workflow described

above, but emphasizes the process of route generation and information sharing. We did
not incorporate a technical layer describing various strategies of connection establishment
or range limiting variables, such as buildings. The simulation’s UI (see Figure 4)
supports the manipulation of the most important parameters, such as number of
vehicles, communication range, subscriptions of online feeds, vehicle target groups and
obstacle detection. It visualizes vehicular networks and lists shared information, both as
a web view, which supports access from mobile devices, and a desktop view for selected
vehicles.

8.1 Preprocessing Map Data

Despite the non-observance of the technical layer, the simulation should be close to
reality. That’s why the road map which forms the basis is the street-map of a city. The
data for such a map exists as osm-files2.
The osm-data is structured in “nodes” and in “ways” whereat the ways are the streets

and the nodes are both crossroads and points on a street. With different points on a
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Figure 4: Our simulation visualizes vehicular ad-hoc networks in realistic urban environ-
ments using OpenStreetMap material. Information about obstacles is shared
either globally or locally with every new encounter. Each data package is
traceable and our visualization provides an overview of the data currently
available to selected vehicles (gray panel on the right).

street it is possible to represent a curve progression by connecting the points with a way.
Hence, one way is a sequence of different points. In general, the end points of a way are
the crossroads. But there are much more nodes than only crossroads and street points.
Most of the maps provide places of interest like restaurants, shops, offices, hydrants,
playgrounds and so forth. This nodes must be deleted from the osm-data. Some ways
are not suitable for cars, for example side walks, cycle ways and raceways.

If only nodes and ways remain which are important for the network of roads, it is
possible to provide the ways and nodes with weights. The weights for the ways are
calculated from the length of the separate fractions lfrac and the maximum speed of the
corresponding road vmax. This results in the formula 2 for calculating the time to pass
through the fraction tfrac. The values (lat1, lon1) and (lat2, lon2) are the geographic
coordinates for two points of a street and the lengths in the direction of latitudes and
longitudes must be multiplied by 111.3 km respectively 111.3 · cos(lat) km because these
are the distances between two latitudes respectively longitudes. For calculating the
time to cross through the full length of the street the separate fractions of time must
be added (see equation 3) whereat T is the number of fractions of the street which are
result from the different points.

The remaining nodes and ways are saved in a weighted and directed graph whereat
the nodes are the vertices and the complete ways are the weighted edges. If there is
a street with two directions, then the graph gets a pair of edges which are directed
opposite, otherwise there is only one directed edge.

Adjacent to the edges it is also possible to add weights to the nodes. Those weights
result from the road class, for example highways or country roads. If there is a crossover,
the node will get the value of the fastest street, that is the least value.
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lfrac =
√
dx2 + dy2 (1)

mit dx = 111.3 · cos(lat) · (lon1− lon2)

dy = 111.3 · (lat1− lat2)

lat = (lat1 + lat2)/2 · 0.01745
tfrac = lroad/vmax (2)

troad =
∑
t∈T

tfrac (3)

8.2 Routing

The routing algorithm used for calculating the shortest path is the D* Lite algorithm
introduced by Koenig and Likhachev in 2002 [4, 5]. This algorithm bases on the Lifelong
Planning A* (LPA*) from Koenig and Likhachev (2002) [6]. If an obstacle occurs both
algorithms can update a shortest path without recalculating the whole way but the
LPA* uses a fixed start point whereas the D* Lite is able to handle a moving start point.

To improve the algorithm once more Fibonacci heaps are used [1]. With a data
structure like this it is possible to find the next neighbour node with the shortest
distance faster.

8.3 Sharing

Our implementation of the information sharing process is based on vehicle classes. We
support three of them (trucks, cars, motorcycles) in our simulation. Every information
generated by other vehicles differs in relevance and content depending on these classes.
Although every report is shared equally, only vehicles of corresponding classes receive
those messages via online feeds. This emulates social target groups and subscriptions.

Every junk of data travels from vehicle to vehicle if they are connected. We imple-
mented a simple connection establishment method, which only depends on range. The
submission of data packages follows the “nearest peer” approach, described earlier. The
decision which data package has higher sharing priority depends on its lifetime and hops
it has taken. Only selected peers can access our web service, which provides storing
capabilities and distributed access functionality. This forces the majority of vehicles to
wait until relevant data has reached the final receiver, but allows good traceability of
data travels and routing.

The global feed of high-level messages can be accessed by mobile devices with online
connectivity, just like every real-world road user could. Feeds contain specific information
only relevant for certain vehicle classes. Our social online service provides three different
feeds. Local feeds of vehicles on the road can be accessed in our desktop view of
our simulation. They contain every discovered data package and prediction whether
this information is relevant to the route ahead or not. Newly detected obstacles or
environmental conditions are also visible in the map view.
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9 Conclusion

Mobile communication technologies are evolved and well-established, now it is time
to make good use of them. Using vehicle-to-vehicle connections for short ranged and
temporary communication is important for more secure roads and traffic, but also a bit
shortsighted. The benefits of globally shared information are countless for all kinds of
vehicle classes and types. We introduced a workflow of vehicular data generation and
sharing, adapting methods and habits from the daily use of social media by us humans.
Our approach is based on established technologies and our concept is supported by a
simulation with focus on adaptive routing and traceable data packages. The information
shared in this virtual world is presented in a web view and accessible by mobile devices
emulating a “Social Automobile Network”.
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Selective Compensation of
Harmonics in Smart Grid with the
Active Filter of a Charging Station
for Electric Vehicle
Jeremie Foulquier and Lutz Rauchfuß

This work investigates a smart charging station for the development of smart grid
technology in synergy with the electric mobility. In addition to the DC fast charging
function, the charging station compensates reactive power and reduces harmonics. This
paper presents the inverter control for the mitigation of harmonics from multiple low
power Harmonic Generating Loads (HGLs) in a Low Voltage (LV) grid. The inverter
acts as adjustable admittance for each individual harmonic frequency in accordance with
the harmonic voltage and the grid admittance at its installation point. The aim of the
compensation is to maintain the harmonic voltages under the standard threshold and
to collect the harmonic currents from the HGLs installed close to the charging station
by shaping an optimal compensation current. The harmonic detection method and the
controller strategy are described and experimental result on a prototype attests the
performances of the harmonics compensation.

1 Introduction

The widespread use of electric vehicles will necessitate the installation of many charging
stations and will present new challenges for the utilities in particular the peak power
management but also new opportunities in which electric vehicles can serve as resources
to the grid. Besides, the change from central generation to distributed generation
of power encourages the utilities to invest in grid modernization and to develop new
decentralized management of Power Quality (PQ). Active power regulation according to
the grid frequency, reactive power compensation and harmonics reduction are established
tasks that are developed and begin to be integrated in grid converters to provide ancillary
PQ ability.

Because power electronics improve the energy efficiency and therefore are used in
modern equipment, the part of non-linear low power consumers in the load profile
remarkably expands and the summation of all these HGLs increase the level of harmonic
distortion of the mains supply. Non-linear loads could be categorized into identified and
unidentified loads [2]. Although high-power loads are identified and the utility knows
them, small loads are unidentified and are installed in the LV grid. Due to their large
number, unidentified loads could not be treated individually for PQ purpose; a global
compensation of their harmonics with several Active Power Filters (APFs) is required.
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Because a series APF compensates harmonics just in a part of the grid, only a shunt
APF can globally reduce the harmonics in the LV grid. Basically, shunt AFPs work
with current detection and are used to compensate the harmonic currents of identified
HGL. Some research on the compensation of harmonics resonances with a shunt AFP
working with voltage detection has been done [13]. The shunt APF, called Active
Resonance Damper (ARD) is installed at the end of a distribution line and presents a
resistance equal to the characteristic impedance of the feeder [10]. Operating at similar
conductance for all harmonics frequencies, the ARD can magnify another harmonics. To
avoid this, a discrete frequency tuning shunt APF has been created to adjust damping
conductance of individual harmonics frequencies [6]. The effects of distributed and
end-of-line photovoltaic inverters as shunt APF systems on harmonics compensation
have been investigated and suggest different compensation strategies depending on the
system load characteristics [8]. So far, only the reduction of the harmonic voltages
is considered. The new challenge is the compensation of the harmonic currents of all
HGLs that are dispersed around the charging station. While the harmonic currents
come simultaneously from upstream and downstream sources around the compensation
point, the control strategy, as studied in [1], is based on voltage detection.

The project of the smart charging station used as a shunt APF for the decentralized
control of PQ aim to develop smart grid in synergy with electric mobility and to prevent
grid expansion. For a minimal impact on the grid, the three phase inverter shape a sym-
metrical and sinusoidal charging current in accordance with the harmonic requirements
defined in [7]. This paper focuses on the inverter control for the compensation of the
harmonics in the LV grid. The inverter of the charging station can adjust dynamically
and separately for each harmonic frequency its admittance with optimally phase and
amplitude to comply with the voltage harmonics and the grid admittance at its installa-
tion point. The main purpose of this compensation is to maintain the harmonic voltages
in LV grid under the standard threshold [12] and restrain the harmonic currents of the
HGLs to flow into the medium voltage grid.

The harmonic measurement is presented in section 2. Section 3 presents the proposed
algorithm for the harmonics compensation and section 4 explains the control of the
inverter of the charging station. The effectiveness of the harmonic compensation is
verified experimentally on a prototype in section 5.

2 Harmonic Detection

2.1 Sliding Discrete Fourier Transform

Most harmonic measurement methods are with Fourier bases and can be classified into
batch signal processing and recursive analysis methods [4]. Recursive methods provide
real-time spectral analysis that is required in control applications. The Sliding Discrete
Fourier Transform (SDFT) is a recursive method that is widely used in APF control for
selective harmonic compensation [11]. It is an efficient method for narrowband spectrum
analysis of only some frequencies. A good description of the SDFT algorithm can be
found in [5]. The harmonic of order h of a discrete signal x(n) with sampling frequency
fS is calculated with the SDFT by a frequency shift dq and a moving average of N
sample.

xh,dq(n) = x(n) · e−j2π·h·fg ·n/fS (1)
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Figure 1: SDFT frequency magnitude response: synchronization adjusts the location of
the zero crossings and reduces the spectral leakage

N∑
n=1

xh,dq(n) =
N−1∑
n=0

xh,dq(n)− xh,dq(0) + xh,dq(N) (2)

To avoid spectral leakage, the rectangular SDFT window of length TDFT must be
synchronized with the mains frequency fg as in the IEC 61000-4-7 and shown in Figure 1.
Commonly the sampling frequency is synchronized with the mains frequency by means of
resampling or interpolation mechanism. Another technique, presented here and similar
to interpolation, computes a stepless adaptive SDFT window (e.g. TDFT = 2401.35
samples) by multiplying the fractional part of the window length m = 0.35 with the
last sample xh,dq(N + 1) of the SDFT window as follows

Xh =

√
2

TDFT

·
(

N∑
n=1

xh,dq(n) + xh,dq(N + 1) ·m
)

(3)

TDFT =
10 · fS
fg

; N = �TDFT �; m = TDFT −N

This method synchronizes precisely in the μHz range the SDFT with the main
frequency while the sampling frequency stays constant as stabile time frame. This
method is computationally fast and is compatible with oversampling function of Analog-
to-Digital Converters (ADC).

2.2 Frequency Locked Loop

Passive HGLs like transformers or rectifiers generate harmonic frequencies that are an
exact multiple of the mains frequency and cause the most distortions. An accurate
synchronization with the mains frequency is required for their compensation and is
released here with a frequency locked loop (FLL) based on the SDFT as shown in
Figure 2.

In the SDFT, the frequency shifting is equal to the oscillator and the phase measure-
ment of the fundamental component Δϕ1 of the grid voltage ua is equal to the phase
detector. The derivative of Δϕ1 provides the frequency deviation between the SDFT
frequency and the mains frequency. This deviation is corrected by the integrator with a
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Figure 2: Frequency locked loop for the synchronization with the mains frequency

Figure 3: Norton equivalent circuit of the grid g, the charging station CS and the
harmonic generating loads HGL

gain Ki,FLL to adjust the loop dynamics. The phase coherence between the measurement
of the hth harmonic and the voltage fundamental is maintained in the SDFT by

θh,DFT = h · (2π · fg · n/fS +Δϕ1) (4)

2.3 Fundamental Component Filter

The measurement of the harmonic voltages is improved by the pre-filtering of the
fundamental component. The fundamental is measured by means of the SDFT and
subtracted from the grid voltage.

3 Compensation Algorithm

Thanks to the SDFT, the harmonic compensation algorithm operates for single harmonic
frequencies and it will be studied with the Norton equivalent circuit presented in Figure
3. In this figure, the HGLs in the vicinity of PCC and the LV grid are the harmonic
sources IHGL,N and Ig,N , respectively as well as YHGL and Yg are the respective harmonic
admittances. YCS is the harmonic admittance of the shunt APF.
The hth harmonic voltage at PCC is calculated with the principle of superposition as

follows

U g =
Ig,N + IHGL,N

Y g + Y CS + Y HGL

(5)

and the result of the compensation can be written as

λ =

∣∣∣∣U g(Y CS �= 0)

U g(Y CS = 0)

∣∣∣∣ =
∣∣∣∣ Y g + Y HGL

Y g + Y CS + Y HGL

∣∣∣∣ (6)

where λ denote the harmonic voltage compensation ratio before (YCS = 0) and after
(YCS �= 0) the compensation with the shunt APF. The higher the absolute value of the
denominator in equation (5), the lower the harmonic voltage and the more efficiently
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Figure 4: Vector diagram of the admittances for the optimal compensation

the compensation (λ < 1). The summation of the three admittances is illustrated in
Figure 4.
It shows that best compensation is obtained if the admittance of the shunt APF is

proportional to the sum of the admittances of the grid and the HGLs together,

Y CS = KCS · Y g+HGL (7a)

φY CS = φY g+HGL (7b)

where the proportional factor KCS is a positive real number. Consequently, the phase
φY CS of the admittances of the shunt APF must be equal to the phase φY g+HGL of the
admittances at PCC before compensation. To achieve this optimal compensation, the
shunt APF generates a harmonic current ICS that is controlled in magnitude and phase
according to the harmonic voltage UG at PCC as explained in section 4. In addition
to the harmonic voltage mitigation, the second target is to reduce, or at least not to
amplify the harmonic current Ig from the grid. According to Figure 3 this current can
be calculated as

Ig = Ug · (Y CS + Y HGL)− IHGL,N (8)

Introducing a harmonic source ratio as follows

Kh =
Ig,N

IHGL,N

(9)

and including (5), this current can be written as

Ig =
Kh · (Y CS + Y HGL)− Y g

Y g + Y CS + Y HGL

(10)

The result of the compensation can be written as

γ =

∣∣∣∣Ig(Y CS �= 0)

Ig(Y CS = 0)

∣∣∣∣ = λ ·
∣∣∣∣∣Kh ·

(
Y CS + YHGL

)
− Y g

Kh · Y HGL − Y g

∣∣∣∣∣ (11)

where γ denotes the harmonic current compensation ratio. Once more, all quantities in
this section refer to a single harmonic frequency. The result of the compensation from
equations (11) and (6) is illustrated in Figure 5 for Y g = 10S/0◦ and Y HGL = 2S/0◦

and can be divided into three cases:

1) The grid generates no harmonic, Ig,N = 0 ⇔ Kh = 0. It results before the
compensation that, the amount of harmonic current between grid and HGLs is
medium, and the voltage distortion at PCC is medium too, compared to the two
other cases. No grid harmonic infers in equation (11) that, voltage and current
compensation ratio are the same γ = λ and, as the black curve shows in Figure 5,
the shunt APF reduces the harmonic voltage U g and current Ig at the same time:
γ = λ < 1. The compensation has only positive effects for the grid.
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Figure 5: Harmonic current compensation ratio γ according to the shunt APF admittance
|Y CS| and the harmonic current source ratio Kh for Y g = 10S/0◦ and Y HGL =
2S/0◦

2) The grid is a harmonic source in opposite phase to the HGLs harmonic source, i.e.
|Kh| > 0 and φKh = 180◦. Consequently, these two sources have a generator-consumer
relation where the direction of the harmonic current at PCC is only a function of the
strongest current source i.e if |Kh| > 1 or |Kh| < 1. This opposite phase results in a
high amount of harmonic current between grid and HGLs and a low voltage distortion
at PCC before the compensation starts. Once the shunt APF compensates, the
harmonic voltage U g is reduced (black curve). In the case that the strongest harmonic
source are the HGLs, i.e. |Kh| < 1, the grid current Ig is reduced (blue dashed
line). In the other case, |Kh| > 1, (green dashed line) the compensation amplifies the
grid current so that a high compensation rate, i.e. KCS > 1, is unfavorable. For a
moderate compensation rate KCS < 1, this amplification is not critical for the grid.

3) The grid is a harmonic source in phase with the HGLs harmonic source, i.e. |Kh| > 0
and φKh = 0◦. These two sources have a generator-generator relation and the
direction of the harmonic current at PCC is a function of the strongest current
source divided by its respective admittance, i.e. the strongest voltage source. It
results in a low amount of harmonic current between grid and HGLs but a high
voltage distortion at PCC before the compensation. While the APF compensates,
the harmonic voltage U g is reduced (black curve) and, in the case that the HGLs is
the strongest voltage source, the grid current Ig is reduced (blue line). Because the
harmonic current at PCC was low before the compensation, the harmonic current
compensation ratio increase rapidly (green curve) and high compensation rate are
unfavorable for the grid current. In the other case, the grid is the strongest voltage
source and the compensation always amplifies the grid harmonic current.

Summary: The shunt APF admittance defined in equation (7) is always profitable
for the harmonic voltage mitigation at PCC. Because the harmonic current flows from
the strongest to the lowest source, the APF admittance reduces the harmonic current
of the lowest source. Thus, the compensation is most effective when the HGLs are
the strongest source and are located in the vicinity of the shunt APF. The moderate
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Figure 6: Block diagram of the inverter control for the compensation of one harmonic

compensation rate KCS < 1 for partial compensation ensures that harmonic current
amplification of the strongest source is not excessive.

4 Inverter Control

A block diagram of the inverter control for the compensation of one harmonic is presented
in Figure 6.
The charging station is equipped with a 3-phase 2-level inverter (block 1) controlled

by space vector modulation [9, p. 40] (block 2). The synchronization with the voltage
fundamental component and its filtering (block 3) and the harmonics measurement
(blocks 4) has been summarized in section 2. The measured phasors of the voltage
and current harmonics of the 3 phases a, b, c are computed into positive and negative
sequence 1, 2 (block 5) for the compensation of each harmonic in the appropriated
sequence. The control of the harmonic admittance Yh,12 of the shunt APF contains two
loops. The inner control loop adjusts the compensation current ih,12 with PI controllers
(block 7). The outer control loop adjust the optimal admittance Yh,12 with extremum
seeking controls [3] (block 6, Figure 7): the magnitude and phase of the compensation
current ih∗12 are alternatively adjusted according to the rising or falling magnitude
of the compensated harmonic voltage uh,12. As defined in equation (7), the optimal
current phase is obtained when the harmonic voltage uh,12 has the lowest magnitude
i.e. when the compensation has best efficiency. In a similar way, the optimal current
magnitude is obtained when the harmonic voltage is reduced to the fixed threshold and
no amplification occurs. To increase the correlation between the compensation current
and its effect on the magnitude of the harmonic voltage, a series of measurements for
two different current adjustments are applied.
Figure 7 outlines the control of the phase of the compensation current for one harmonic.

Two different phases φi,h and φi,h +Δφi,h are n times alternatively adjusted while the
magnitude of the harmonic voltage Uh is measured and respectively added or subtracted
to
∑

Uh. This differential sum is the comparison of the compensation effect between
the two different phases. Then, the best phase is held and the sign of the new phase
step Δφi,h is selected. The phase step is adjusted for best precision while maintaining a
distinct compensation effect. The principle to control the magnitude of the compensation
current is the same, with the distinction that the harmonic voltage is adjusted to the
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Figure 7: Control of the phase for the optimal compensation current

Figure 8: Laboratory test circuit: Rg = 2, 5Ω, Lg = 0, 8mH, Cg = 4μF, LCS = 12mH

threshold value and not to the lowest value. The compensation magnitude is constantly
adapted to avoid harmonic amplification while the grid distortion decreases.

5 Laboratory Test Results

The operation of a 10-kVA prototype of the charging station with the proposed control
method is demonstrated in laboratory with the test circuit illustrated in Figure 8.

The inverter control is implemented on the digital signal processor ADSP-BF537
EZ-KIT Lite. The ADC, the SDFT, the digital control and the switching frequency
of the inverter run synchronously at 12 kHz. The passive elements Rg, Lg and Cg

increase the grid impedance and thus amplify the harmonic voltage distortion caused
by the rectifier. Only steady-state active filtering performance is studied while fast
transient response is not required for the compensation of grid harmonics produced by
multiple low power HGLs. The 5th, 11th, 13th, 17th, 19th, 23th and 25th harmonics are
compensated with independent control loops while the 7th is not compensated to verify
the selectivity of the compensation. Figure 9 shows the uncompensated grid current
ig,a and grid voltage ua at charging station connection point. The current waveform
displays high harmonic levels with a THD = 28% which in turn leads to noticeable
voltage harmonics. Figure 10 shows the grid voltage and current while the compensation
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Figure 9: Grid voltage and current without compensation

Figure 10: Selective harmonic compensation with voltage controlled APF
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operates and reaches the steady state. The voltage controlled compensation of the
harmonics is activated in the appropriated positive or negative sequence if the threshold
of 1V is overstepped. As intended, the compensation current iCS,a has a high harmonic
level and virtually no fundamental component. The effectiveness of the shunt APF is
obvious, as the grid current waveform with a THD = 10% and the grid voltage waveform
show. Harmonic spectrums of currents and voltages with/without active filtering are
compared on Figure 11 with respectively filled/outlined bars. The partial mitigation of
the grid harmonic voltages under the threshold and the selectivity of the compensation
are evident. The voltage controlled compensation algorithm adapts the admittance
of the charging station for each harmonic and thus absorb the harmonic currents of
the HGL installed in the vicinity. It results in a significant reduction of the harmonic
current of the grid and lower voltage distortion.

(a)

(b)

Figure 11: Harmonic spectrums with/without compensation: filled/outlined bars, (a)
grid voltages Uabc, (b) currents phase a

6 Conclusion

To develop smart grid in synergy with electric mobility, a smart charging station used
as a shunt APF in LV grid is proposed. In response to the rising number of non-linear
modern equipment this paper has described the selective harmonic compensation as
an ancillary function of the charging station. The sliding discrete Fourier transform
synchronized with a frequency locked loop is adopted for the harmonics measurement.
Then, the adjustment of the shunt APF as a controlled admittance is studied. At anytime
the shunt APF can mitigate the harmonic voltages of the grid at its installations point.
The reduction at the same time, of the harmonic current has been examined and is
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achieved if the shunt APF is installed in the vicinity of the HGLs. The objective is a
moderate compensation rate to maintain the harmonic voltages under the threshold
value and restrain a part of the harmonic currents of the HGLs from flowing into the
medium voltage grid. The structure of the harmonic control loops is described and
the adjustment of the compensation current in magnitude and phase with extremum
seeking control is explained. Experimental results demonstrate the effectiveness of the
voltage controlled selective harmonic compensation implemented in the prototype of the
charging station.

References

[1] H. Akagi. ‘Control strategy and site selection of a shunt active filter for damping
of harmonic propagation in power distribution systems’. In: Power Delivery, IEEE
Transactions on 12.1 (1997).

[2] H. Akagi. ‘New trends in active filters for power conditioning’. In: Industry
Applications, IEEE Transactions on 32.6 (1996).

[3] B. Calli, W. Caarls, P. Jonker, and M. Wisse. ‘Comparison of extremum seeking
control algorithms for robotic applications’. In: Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on (2012).

[4] G. Chang and C.-I. Chen. ‘Measurement techniques for stationary and time-varying
harmonics’. In: Power and Energy Society General Meeting, 2010 IEEE (2010).

[5] E. Jacobsen and R. Lyons. ‘The sliding DFT’. In: Signal Processing Magazine,
IEEE 20.2 (2003).

[6] T.-L. Lee, J.-C. Li, and P.-T. Cheng. ‘Discrete Frequency Tuning Active Filter
for Power System Harmonics’. In: Power Electronics, IEEE Transactions on 24.5
(2009).

[7] Limits for harmonic currents produced by equipment connected to public low-
voltage systems with input current > 16 A and < 75 A per phase. IEC 61000-3-12.
Electromagnetic compatibility (EMC), 2011.

[8] S. Munir and Y. W. Li. ‘Residential Distribution System Harmonic Compensation
Using PV Interfacing Inverter’. In: Smart Grid, IEEE Transactions on 4.2 (2013).

[9] N. P. Quang and J. Dittrich. Vector Control of Three-Phase AC Machines. Ed. by
Springer. 2008.

[10] W. Santana, K. Al-Haddad, and L. da Silva. ‘Modeling and active damping of
harmonic propagation on electric distribution systems’. In: Electrical Power &
Energy Conference (EPEC), 2009 IEEE (2009).

[11] K. Sozanski. ‘Selective harmonics compensator’. In: Nonsinusoidal Currents and
Compensation (ISNCC), 2013 International School on (2013).

[12] Voltage characteristics of electricity supplied by public distribution networks. DIN
EN 50160. 2011.

[13] K. Wada, H. Fujita, and H. Akagi. ‘Considerations of a shunt active filter based
on voltage detection for installation on a long distribution feeder’. In: Industry
Applications Conference, 2001. Thirty-Sixth IAS Annual Meeting. Conference
Record of the 2001 IEEE 1 (2001).





Journal of the University of Applied Sciences Mittweida
Wissenschaftliche Zeitschrift der Hochschule Mittweida

Hochschule Mittweida
University of Applied Sciences
 Technikumplatz 17
D-09648 Mittweida

All rights reserved             ISSN 1437-7624

SCIENTIFIC REPORTS
WISSENSCHAFTLICHE BERICHTE

The main aspect of the Scientific Reports is to promote the discussion of modern                                           

developments in research and production and to stimulate the interdisciplinary cooperation         

by information about conferences, workshops, promotion of partnerships and statistical                 

information on annual work of the Hochschule Mittweida (FH) University of Applied Sciences. 

This issue will be published sporadically. Contributors are requested to present results of 

current research, transfer activities in the field of technology and applied modern techniques 

to support the discussion among engineers, mathematicians, experts in material science and 

technology, business and economy and social work.  

Hochschule Mittweida
University of Applied Sciences

Referat Forschung
PF 1457

D-09644 Mittweida

Tel: +49 (0) 3727 /  58 1264
Fax +49 (0) 3727 /  58 1178

©


